
Tutorato Architettura degli Elaboratori 08

Alberto Paparella1

27 Maggio 2025

1Dipartimento di Matematica e Informatica, Università degli studi di Ferrara

Esercizi di laboratorio

Istruzioni

Ogni esercizio è descritto tramite un programma in linguaggio C.

Se la realizzazione di un I/O non è richiesta, le variabili possono essere

inizializzate con istruzioni assembler o con direttive (nel caso degli array).

Si raccomanda di seguire le convenzioni del linguaggio assembler specie

per ciò che riguarda le funzioni.

Si raccomanda di utilizzare i commenti per indicare la corrispondenza fra

variabili del C e registri.

I commenti sono anche utili per descrivere cosa volete fare nel codice.

1

Esercizio 1

Programma che calcola il prodotto di due numeri naturali in una CPU a

32 bit priva di moltiplicatore. L’esercizio deve essere risolto senza

utilizzare macro (bge . . .). Si ignorino eventuali problemi di overflow.

1 int main() {

2 unsigned int x, y; /* moltiplicando e moltiplicatore */

3 unsigned int p; /* prodotto */

4 int i, tmp; /* variabili */

5 x = 16; y = 18; p = 0;

6 i = 0;

7 while (i < 32) {

8 tmp = y & 1; /* i-th bit of y */

9 if (tmp != 0)

10 p = p + x;

11 y = y >> 1;

12 x = x << 1; /* x=x*2 */

13 i = i + 1;

14 }

15 }

Listing 1: Codice C per il calcolo del prodotto fra due interi.
2

Esercizio 2

Verifica dell’ordinamento di un vettore. Anche in questo caso non si

devono utilizzare macro. Il codice non é ottimizzato, ma questo non

riguarda l’esercizio.

1 int main() {

2 int array [8]={0,1,4,2,7,8,4,6};

3 int i;

4 /* ordinamento crescente e str. crescente */

5 int ord_c , ord_sc;

6 i = 0;

7 ord_c = ord_sc = 1; /* true */

8 while (i < 7) {

9 if (array[i] >= array[i+1])

10 ord_sc = 0;

11 if (array[i] > array[i+1])

12 ord_c = 0;

13 i = i + 1;

14 }

15 }

Listing 2: Codice C per la verifica dell’ordinamento di un vettore.
3

Esercizio 3

Funzione che calcola un esempio di espressione. Si faccia l’ipotesi di

dover preservare tutti i registri utilizzati dall’espressione (compreso i $t).

1 int main() {

2 int a,b,c,d;

3 int v;

4 a = 7; b = 4; c =4 ; d = 2;

5

6 v = dist(a,b,c,d);

7 }

8

9 int dist(int a, int b, int c, int d) {

10 int result;

11 result = (a + b) >> (c - d) + b << d;

12 /* << e >> sono prioritari rispetto alla somma */

13 return result;

14 }

Listing 3: Codice C per il calcolo di un’espressione.

4

Esercizio 4

Programma inteso a verificare le differenze fra & ed && in C.

1 int main() {

2 int x, y, w;

3 x = 9; y = 6;

4 w = 0;

5 if (x & y) /* bitwise and */

6 w = 1;

7 else

8 if (x && y) /* logical and */

9 w = 2;

10 }

Listing 4: Codice C per per verificare le differenza fra & ed &&.

5

Soluzioni

Esercizio 1

1 .text

2 addi $s0 , $zero , 1024 # x

3 addi $s1 , $zero , 16 # y

4 addi $s2 , $zero , 0 # p

5

6 addi $t0 , $zero , 0

7 addi $t1 , $zero , 32

8

9 loop:

10 beq $t0 , $t1 , endloop

11 andi $t2 , $s1 , 1

12 beq $t2 , $zero , label

13 add $s2 , $s2 , $s0
14 label:

15 srl $s1 , $s1 , 1

16 sll $s0 , $s0 , 1

17 addi $t0 , $t0 , 1

18 j loop

19 endloop:

Listing 5: Codice assembly MIPS per il calcolo del prodotto fra due interi.
6

Esercizio 2 (1)

1 .data

2 array: .word 0, 1, 2, 4, 6, 7, 9, 0

3

4 .text

5 addi $s0 , $zero , 1 # ord_c

6 addi $s1 , $zero , 1 # ord_sc

7 addi $s2 , $zero , 0 # i

8 addi $t0 , $zero , 7

9 addi $t1 , $zero , 0

10

11 # loop non ottimizzato

12 lw $t2 , array($t1)

Listing 6: Codice assembly MIPS per la verifica dell’ordinamento di un vettore

(1).

7

Esercizio 2 (2)

1 loop:

2 beq $s2 , $t0 , endloop

3 addi $s2 , $s2 , 1

4 sll $t1 , $s2 , 2 # addr =4*i

5 lw $t3 , array($t1)
6 slt $t4 , $t2 , $t3 # array[i+1]< array[i]

7 bne $t4 , $zero , label0

8 addi $s1 , $zero , 0

9 label0:

10 slt $t4 , $t3 , $t2 # array[i]>array[i+1]

11 beq $t4 , $zero , label1

12 addi $s0 , $zero , 0

13 label1:

14 addi $t2 , $t3 , 0 # evita una lw per ciclo

15 j loop

16 endloop:

Listing 7: Codice assembly MIPS per la verifica dell’ordinamento di un vettore

(2).

8

Esercizio 3 (1)

1 .text

2 main:

3 addi $s0 , $zero , 7 # a

4 addi $s1 , $zero , 4 # b

5 addi $s2 , $zero , 4 # c

6 addi $s3 , $zero , 2 # d

7

8 # possible operations on $s0..3 and other registers

9 addi $a0 , $s0 , 0 # argument 1

10 addi $a1 , $s1 , 0 # argument 2

11 addi $a2 , $s2 , 0 # argument 3

12 addi $a3 , $s3 , 0 # argument 4

13 jal dist # call Function

14 addi $s4 , $v0 , 0 # returned value

Listing 8: Codice assembly MIPS per il calcolo di un’espressione (1).

9

Esercizio 3 (2)

1 dist:

2 addi $sp , $sp , -12 # make space on stack to

3 # store three registers

4 sw $s0 , 0($sp) # save $s0 on stack

5 sw $s1 , 4($sp) # save $s1 on stack

6 sw $s2 , 8($sp) # save $s2 on stack

7

8 add $s0 , $a1 , $a0 # a+b

9 sub $s1 , $a2 , $a3 # c-d

10 sllv $s2 , $a1 , $a3 # b<<d

11 srlv $s0 , $s0 , $s1 # >>

12 add $v0 , $s0 , $s2
13

14 lw $s0 , 0($sp) # restore $s0 from stack

15 lw $s1 , 4($sp) # restore $t0 from stack

16 lw $s2 , 8($sp) # restore $t0 from stack

17 addi $sp , $sp , 12 # deallocate stack space

18

19 jr $ra # return to caller

Listing 9: Codice assembly MIPS per il calcolo di un’espressione (2).
10

Esercizio 4

1 .text

2 addi $s0 , $zero , 9

3 addi $s1 , $zero , 7

4 addi $s2 , $zero , 0

5 # nota: in base 2 ho 1001 e 0110 sono entrambi != 0

6 # e quindi "veri" per && ma il loro and bit a bit da 0

7 # ovvero falso

8 and $t0 , $s0 , $s1
9 beq $t0 , $zero , label

10 addi $s2 , $zero , 1

11 j join

12 label:

13 beq $s0 , $zero , join

14 beq $s1 , $zero , join

15 addi $s2 , $zero , 2

16 join:

Listing 10: Codice assembly MIPS per verificare le differenza fra & ed &&.

11

	Esercizi di laboratorio
	Soluzioni

