Tutorato Architettura degli Elaboratori 08

Alberto Paparellal
27 Maggio 2025

! Dipartimento di Matematica e Informatica, Universitd degli studi di Ferrara

Esercizi di laboratorio

Istruzioni

Ogni esercizio & descritto tramite un programma in linguaggio C.

Se la realizzazione di un 1/O non e richiesta, le variabili possono essere
inizializzate con istruzioni assembler o con direttive (nel caso degli array).
Si raccomanda di seguire le convenzioni del linguaggio assembler specie
per cio che riguarda le funzioni.

Si raccomanda di utilizzare i commenti per indicare la corrispondenza fra
variabili del C e registri.

| commenti sono anche utili per descrivere cosa volete fare nel codice.

Esercizio 1

Programma che calcola il prodotto di due numeri naturali in una CPU a
32 bit priva di moltiplicatore. L'esercizio deve essere risolto senza
utilizzare macro (bge ...). Si ignorino eventuali problemi di overflow.

1 int main() {

2 unsigned int x, y; /* moltiplicando e moltiplicatore */
3 unsigned int p; /* prodotto */

4 int i, tmp; /* variabili x*/

5 x = 16; y = 18; p = 0;

6 i = 0;

7 while (i < 32) {

8 tmp = y & 1; /* i-th bit of y */
9 if (tmp !'= 0)

10 p=p + x;

11 y =y >> 1;

12 X = x << 1; /* x=x*2 */

13 i=1i+ 1;

14 ¥

15 F

Listing 1: Codice C per il calcolo del prodotto fra due interi.

Esercizio 2

1

Verifica dell'ordinamento di un vettore. Anche in questo caso non si
devono utilizzare macro. Il codice non é ottimizzato, ma questo non
riguarda |'esercizio.

int main() {
int array([8]={0,1,4,2,7,8,4,6};
int i;
/* ordinamento crescente e str. crescente */
int ord_c, ord_sc;
i = 0;
ord_c = ord_sc = 1; /* true */
while (i < 7) {
if (array[i]l >= array[i+1])
ord_sc = 0;
if (array[i] > array[i+1])
ord_c = 0;
i=1i+ 1;

Listing 2: Codice C per la verifica dell'ordinamento di un vettore.

Esercizio 3

Funzione che calcola un esempio di espressione. Si faccia I'ipotesi di
dover preservare tutti i registri utilizzati dall'espressione (compreso i $t).

1 int main() {
2 int a,b,c,d;
3 int v;

6 v = dist(a,b,c,d);

9 int dist(int a, int b, int c, int d) {

10 int result;

11 result = (a + b) > (c - d) + b << d;

12 /* << e >> sono prioritari rispetto alla somma */
13 return result;

14 ¥

Listing 3: Codice C per il calcolo di un'espressione.

Esercizio 4

Programma inteso a verificare le differenze fra & ed && in C.

1 int main() {

2 int x, y, w;
x = 9; y = 6;
4 w = 0;
5 if (x & y) /* bitwise and */
6 w = 1;
7 else
8 if (x && y) /* logical and */
9 w o= 2;
0 }

Listing 4: Codice C per per verificare le differenza fra & ed &&.

Soluzioni

Esercizio 1

1 .text

2 addi $s0, $zero, 1024 # x
3 addi $s1, $zero, 16 #y
4 addi $s2, $zero, O # p
5

6 addi $t0, $zero, O

7 addi $t1, $zero, 32

8

9 loop:

10 beq $t0, $t1, endloop

11 andi $t2, $s1, 1

12 beq $t2, $zero, label

13 add $s2, $s2, $s0

14 label:

15 srl $s1, $s1, 1

16 sll $s0, $sO0, 1

17 addi $t0, $to, 1

18 j loop

19 endloop:

Listing 5: Codice assembly MIPS per il calcolo del prodotto fra due interi.

Esercizio 2 (1)

.data

array:

.text
addi
addi
addi
addi
addi

$s0,
$s1,
$s2,
$t0,
$t1,

.word O,

$zero
$zero
$zero
$zero

$zero

O N O » =

loop non ottimizzato

lw $t2,

array ($t1)

Listing 6: Codice assembly MIPS per la verifica dell’'ordinamento di un vettore

(1)-

Esercizio 2 (2)

1

N

loop:
beq $s2, $t0, endloop
addi $s2, $s2, 1
sll $t1, $s2, 2 # addr=4xi
lu $t3, array($tl)
slt $t4, $t2, $t3 # array[i+i1]<arrayl[il]
bne $t4, $zero, labelO
addi $s1, $zero, O
labelO:
slt $t4, $t3, $t2 # arrayl[il>array[i+1]
beq $t4, $zero, labell
addi $s0, $zero, O
labell:
addi $t2, $t3, O # evita una lw per ciclo
j loop
endloop:

Listing 7: Codice assembly MIPS per la verifica dell'ordinamento di un vettore

(2).

Esercizio 3 (1)

Jtexit

main:
addi $s0, $zero,
addi $s1, $zero,
addi $s2, $zero,
addi $s3, $zero,

ISR
* o o o
a0 o op

possible operations on $s0..3 and other registers
addi $a0, $sO0, O # argument
addi $al, $s1, O # argument
addi $a2, $s2, 0 # argument
addi $a3, $s3, 0 # argument
jal dist # call Function

addi $s4, $v0, O # returned value

Sw N e

Listing 8: Codice assembly MIPS per il calcolo di un’espressione (1).

Esercizio 3 (2)

1 dist:

2 addi $sp, $sp, -12 # make space on stack to
3 # store three registers

4 sw $s0, 0($sp) # save $sO on stack

5 sw $s1, 4($sp) # save $sl1 on stack

6 sw $s2, 8($sp) # save $s2 on stack

7

8 add $s0, $al, $al0 # a+b

9 sub $s1, $a2, $a3 # c-d

10 sllv $s2, $al, $a3 # b<<d

11 srlv $s0, $s0, $s1 # >>

12 add $vO0, $s0, $s2

13

14 lw $s0, O0($sp) # restore $sO0 from stack
15 lw $s1, 4($sp) # restore $t0 from stack
16 lw $s2, 8($sp) # restore $t0 from stack

17 addi $sp, $sp, 12 # deallocate stack space

19 jr $ra # return to caller

Listing 9: Codice assembly MIPS per il calcolo di un’espressione (2).
10

Esercizio 4

1 .text

2 addi $s0, $zero, 9

3 addi $s1, $zero, 7

4 addi $s2, $zero, O

5 # nota: in base 2 ho 1001 e 0110 sono entrambi != 0
6 # e quindi "veri" per && ma il loro and bit a bit da O
7 # ovvero falso

8 and $t0, $s0, $si

9 beq $t0, $zero, label

10 addi $s2, $zero, 1

11 j join

12 label:

13 beq $s0, $zero, join

14 beq $s1, $zero, join

15 addi $s2, $zero, 2

16 join:

Listing 10: Codice assembly MIPS per verificare le differenza fra & ed &&.

11

	Esercizi di laboratorio
	Soluzioni

