
Tutorato Architettura degli Elaboratori 07

Alberto Paparella1

22 Maggio 2025

1Dipartimento di Matematica e Informatica, Università degli studi di Ferrara

Esercizio sulla ricorsione in MIPS

La ricorsione in MIPS

Vogliamo implementare la funzione di Fibonacci in MIPS dato il

seguente codice C:

1 int fib(int n) {

2 if (n <= 1)

3 return n;

4 else

5 return fib(n - 1) + fib(n - 2);

6 }

Listing 1: Codice C per il calcolo della funzione di Fibonacci.

Attenzione! Si noti che questo codice contiene due chiamate ricorsive.

Serve quindi salvare il risultato della prima chiamata a fib prima di

chiamarla ancora.

1

La ricorsione in MIPS

1. Assegnare i nomi dei registri alle variabili e determinare qual è il caso

base e qual è il caso ricorsivo.

• Un unico input, n, è passato nel registro $a0

• Il caso base è rappresentato dalla clausola then

• Il caso ricorsivo dalla clausola else

2. Convertire il codice per il caso base

1 fib:

2 bgt $a0 , 1, recurse

3 move $v0 , $a0
4 jr $ra

Listing 2: Codice assembly MIPS per il caso base.

2

La ricorsione in MIPS

3. Salvare i registri salvati del chiamato e del chiamante sullo stack

1 recurse:

2 sub $sp , $sp , 12 # Dobbiamo memorizzare 3

registri sullo stack

3 sw $ra , 0($sp) # $ra e’ il primo registro

4 sw $a0 , 4($sp) # $a0 e’ il secondo registro ,

non possiamo assumere che i registri $a non saranno

sovrascritti dal chiamato

Listing 3: Codice assembly MIPS per la gestione dello stack.

4. Chiamare fib ricorsivamente

1 addi $a0 , $a0 , -1 # N-1

2 jal fib

3 sw $v0 , 8($sp) # Memorizzare $v0 , il terzo

registro da memorizzare sullo stack in modo che non

venga sovrascritto dal chiamato

Listing 4: Codice assembly MIPS per la prima chiamata ricorsiva.

3

La ricorsione in MIPS

5. Chiamare fib ricorsivamente, ancora

1 lw $a0 , 4($sp) # Recuperare il valore

originale di N

2 addi $a0 , $a0 , -2 # N-2

3 jal fib

Listing 5: Codice assembly MIPS per la seconda chiamata ricorsiva.

• La tentazione potrebbe essere di calcolare N − 2 sottraendo 1 dal

valore in $a0, invece di ricaricare N e sottrarre 2.

• Anche se questo è tecnicamente corretto (assumendo che si recuperi

il valore originale di $a0 prima di ritornare dalla procedura), questo è

prone a errori (error prone) ed un esempio di cattiva pratica di

programmazione (bad coding practice).

• La convenzione del MIPS indica di non fare nessuna assunzione su

cosa verrà ritornato in qualunque registro oltre a $s0-7, $sp, $gp e

$ra, i quali avranno i loro valori preservati.

4

La ricorsione in MIPS

6. Pulire lo stack e ritornare il risultato

1 lw $t0 , 8($sp) # Recuperare il primo risultato

della funzione

2 add $v0 , $v0 , $t0
3 lw $ra , 0($sp) # Recuperare il return address

4 addi $sp , $sp , 12

5 jr $ra

Listing 6: Codice assembly MIPS per la pulizia dello stack.

5

Dal MIPS al C

Nel seguente codice assembly MIPS, il valore nel registro $a0 è un input

e il valore nel registro $v0 è l’output.

1. Ritradurre la seguente funzione MIPS al codice C equivalente

.

1 f unc :

2 add i $t0 , $zero , 1 # i = 1

3 add i $v0 , $zero , 1 # v = 1

4 Loop :

5 s l e $t1 , $t0 , $a0 # Se t t a r e $t1 a 1 se (1 <= arg)

6 beq $t1 , $zero , E x i t # Us c i r e d a l l oop se (i > arg)

7 mul $v0 , $v0 , $t0 # v ∗= i

8 add i $t0 , $t0 , 1 # i++

9 j Loop # C i c l o

10 Ex i t :

11 j r $ ra

Listing 7: Codice assembly MIPS

2. Quale funzione matematica esegue questo codice?

6

Soluzione

1. Ritradurre la seguente funzione MIPS al codice C equivalente

1 int func(int arg) {

2 int v = 1, i;

3 for (i = 1; i <= arg; i+) {

4 v = v * i;

5 }

6 return v;

7 }

Listing 8: Codice C della soluzione.

2. Il codice esegue il fattoriale per argomenti non-negativi

7

Esercizi di laboratorio

Istruzioni

Ogni esercizio è descritto tramite un programma in linguaggio C.

Se la realizzazione di un I/O non è richiesta, le variabili possono essere

inizializzate con istruzioni assembler o con direttive (nel caso degli array).

Si raccomanda di seguire le convenzioni del linguaggio assembler specie

per ciò che riguarda le funzioni.

Si raccomanda di utilizzare i commenti per indicare la corrispondenza fra

variabili del C e registri.

I commenti sono anche utili per descrivere cosa volete fare nel codice.

8

Esercizio 1

Programma che calcola il massimo fra 3 interi. L’esercizio deve essere

risolto senza utilizzare macro (bge . . .).

1 int main() {

2 int a, b, c;

3 int x; /* massimo */

4

5 a = 4; b = 10; c = 8;

6 /* acquisisce a, b, c (non importa farlo) */

7 x = c;

8 if ((a > b) && (a > c))

9 x = a;

10 else

11 if (b > c)

12 x = b;

13 /* stampa x (non importa farlo) */

14 }

Listing 9: Codice C per il calcolo della del massimo fra 3 interi.

9

Esercizio 2

Calcolo del massimo di un vettore. Anche in questo caso non si devono

utilizzare macro.

1 int main() {

2 int array [8] = {0,1,4,2,7,8,4,6};

3 int i, x; /* x = massimo del vettore */

4

5 /* acquisisce array (da non fare) */

6 i = 1;

7 x = array [0];

8 while (i < 8) {

9 if (array[i] > x)

10 x = array[i];

11 i = i + 1;

12 }

13 /* stampa x (da non fare) */

14 }

Listing 10: Codice C per il calcolo della del massimo di un vettore.

10

Esercizio 3

Funzione che calcola la distanza fra due interi.

1 int main() {

2 int x, y;

3 int v;

4

5 x = 7; y = 4;

6 /* acquisisce x e y (da non fare) */

7 v = dist(x, y);

8 }

9

10 int dist(int x, int y) {

11 int result;

12 if (a > b)

13 result = a - b;

14 else

15 result = b - a;

16 return result;

17 }

Listing 11: Codice C per il calcolo della distanza fra due interi.

11

Esercizio 4

Programma che calcola il numero di uni presenti in un intero a 32 bit.

1 int main() {

2 int i, n, x, y;

3

4 n = i = 0;

5 x = 18; /* intero di cui si calcola il no. di uni */

6

7 while (1 < 32) {

8 y = x & 1;

9 n = n + y;

10 x = x >> 1;

11 i = i + 1;

12 }

13 }

Listing 12: Codice C per il calcolo del numero di uni in un intero a 32 bit.

12

Soluzioni

Esercizio 1 (1)

1 .text

2 # a, b, c, x mappati su $s0 , $s1 , $s2 , $s3
3 addi $s0 , $zero , 4

4 addi $s1 , $zero , 10

5 addi $s2 , $zero , 8

6

7 addi $s3 , $s2 , 0

8

9 slt $t0 , $s1 , $s0 # b < a

10 slt $t1 , $s2 , $s0 # c < a

11 and $t2 , $t0 , $t1 # &&

12

13 bne $t2 , $zero , label0

14 slt $t3 , $s2 , $s1 # c < b

15 beq $t3 , $zero , end

16 addi $s3 , $s1 , 0

17 j end

Listing 13: Codice assembly MIPS per il calcolo del massimo fra 3 interi (1).

13

Esercizio 1 (2)

1 label 0: # (a > b) && (a > c)

2 addi $s3 , $s0 , 0

3 end:

4

5 # non richiesto

6 addi $v0 , $zero , 1

7 addi $a0 , $s3 , 0

8 syscall

9

10 exit:

11 addi $v0 , $zero , 10

12 syscall

Listing 14: Codice assembly MIPS per il calcolo del massimo fra 3 interi (2).

14

Esercizio 2 (1)

1 .data

2 array0: .word 0,1,4,2,7,8,4,6

3 # i due vettori hanno la stessa dimensione

4

5 .text

6 # i in $s0 , x in $s1
7

8 # indice i

9 addi $s0 , $zero , 4

10 # inizializzo x

11 lw $s1 , array0($zero)
12

13 # dimensione dell’array in byte

14 addi $t0 , $zero , 32

Listing 15: Codice assembly MIPS per il calcolo del massimo di un vettore (1).

15

Esercizio 2 (2)

1 loop:

2 beq $s0 , $t0 , exit

3 # carico array[i] in $t2
4 lw $t2 , array0($s0)
5 slt $t1 , $s1 , $t2
6 beq $t1 , $zero , label # x >= array[i]

7 addi $s1 , $t2 , 0

8

9 label:

10 addi $s0 , $s0 , 4

11 j loop

12

13 exit:

14 addi $v0 , $zero , 10

15 syscall

Listing 16: Codice assembly MIPS per il calcolo del massimo di un vettore (2).

16

Esercizio 3 (1)

1 .text

2 main:

3 # $s0 = y

4 addi $s0 , $zero , 7 # x

5 addi $s1 , $zero , 4 # y

6

7 # operazioni su $s0 e $s1
8 addi $a0 , $s0 , 0 # argomento 1

9 addi $a1 , $s1 , 0 # argomento 2

10 jal dist # chiamata a funzione

11 addi $s2 , $v0 , 0 # valore di ritorno

12

13 exit:

14 addi $v0 , $zero , 10

15 syscall

Listing 17: Codice assembly MIPS per il calcolo della distanza fra due interi

(1).

17

Esercizio 3 (2)

1 dist:

2 addi $sp , $sp , -8 # fare spazio sullo stack per

memorizzare due registri

3 sw $t0 , 0($sp) # salva $t0 sullo stack

4 sw $t1 , 4($sp) # salva $t1 sullo stack

5 # non serve per i registri t

6 slt $t0 , $a1 , $a0 # x > y

7 beq $t0 , $zero , label

8 sub $t1 , $a0 , $a1 # x - y

9 j join

10 label:

11 sub $t1 , $a1 , $a0
12 join:

13 addi $v0 , $t1 , 0

14 lw $t0 , 0($sp) # recupera $t0 dallo stack

15 lw $t1 , 4($sp) # recupera $t0 dallo stack

16 addi $sp , $sp , 8 # dealloca spazio dallo stack

17 jr $ra # ritorna al chiamante

Listing 18: Codice assembly MIPS per il calcolo della distanza fra due interi

(2).
18

Esercizio 3 (3)

Attenzione ad indicare una corretta terminazione del programma:

1 exit:

2 addi $v0 , $zero , 10

3 syscall

alla fine del codice relativo al main.

Avendo una funzione, il rischio è che, dopo aver terminato l’esecuzione

del main, il programma riesegua il codice della funzione, entrando in un

loop infinito!

19

Esercizio 4

1 .text

2 addi $s0 , $zero , -68 # x

3 addi $s1 , $zero , 0 # y

4 addi $s2 , $zero , 0 # n

5 addi $s3 , $zero , 0 # i

6 addi $t0 , $zero , 32

7

8 loop:

9 beq $s3 , $t0 , exit

10 andi $t1 , $s0 , 1 # y = x & 1

11 add $s2 , $s2 , $t1 # n = n + y

12 srl $s0 , $s0 , 1 # x = x >> 1

13 addi $s3 , $s3 , 1

14 j loop

15

16 exit:

17 addi $v0 , $zero , 10

18 syscall

Listing 19: Codice assembly MIPS per il numero di uni in un intero a 32 bit.

20

	Esercizio sulla ricorsione in MIPS
	Esercizi di laboratorio
	Soluzioni

