Tutorato Architettura degli Elaboratori 07

Alberto Paparellal
22 Maggio 2025

! Dipartimento di Matematica e Informatica, Universitd degli studi di Ferrara

Esercizio sulla ricorsione in MIPS

La ricorsione in MIPS

Vogliamo implementare la funzione di Fibonacci in MIPS dato il
seguente codice C:
1 int fib(int n) {
if (n <= 1)
return n;

4 else
5 return fib(an - 1) + fib(n - 2);

Listing 1: Codice C per il calcolo della funzione di Fibonacci.
Attenzione! Si noti che questo codice contiene due chiamate ricorsive.

Serve quindi salvare il risultato della prima chiamata a fib prima di
chiamarla ancora.

La ricorsione in MIPS

1.

2.

1
2
S]

4

Assegnare i nomi dei registri alle variabili e determinare qual ¢ il caso
base e qual & il caso ricorsivo.

e Un unico input, n, & passato nel registro $a0

e |l caso base & rappresentato dalla clausola then

e |l caso ricorsivo dalla clausola else

Convertire il codice per il caso base

fib:
bgt $a0, 1, recurse
move $v0, $a0
jr $ra

Listing 2: Codice assembly MIPS per il caso base.

La ricorsione in MIPS

3. Salvare i registri salvati del chiamato e del chiamante sullo stack

1 recurse:

2 sub $sp, $sp, 12 # Dobbiamo memorizzare 3
registri sullo stack

3 sw $ra, 0($sp) # $ra e’ il primo registro

4 sw $a0, 4($sp) # $a0 e’ il secondo registro,

non possiamo assumere che i registri $a non saranno

sovrascritti dal chiamato

Listing 3: Codice assembly MIPS per la gestione dello stack.

4. Chiamare fib ricorsivamente

1 addi $a0, $al0, -1 # N-1
2 jal fib
3 sW $v0, 8($sp) # Memorizzare $vO, il terzo

registro da memorizzare sullo stack in modo che non

venga sovrascritto dal chiamato

Listing 4: Codice assembly MIPS per la prima chiamata ricorsiva.

La ricorsione in MIPS

5. Chiamare fib ricorsivamente, ancora

1 lw $a0, 4($sp) # Recuperare il valore
originale di N

2 addi $a0, $a0, -2 # N-2

3 jal fib

Listing 5: Codice assembly MIPS per la seconda chiamata ricorsiva.

e La tentazione potrebbe essere di calcolare N — 2 sottraendo 1 dal
valore in $a0, invece di ricaricare N e sottrarre 2.

e Anche se questo & tecnicamente corretto (assumendo che si recuperi
il valore originale di $a0 prima di ritornare dalla procedura), questo &
prone a errori (error prone) ed un esempio di cattiva pratica di
programmazione (bad coding practice).

e La convenzione del MIPS indica di non fare nessuna assunzione su
cosa verra ritornato in qualunque registro oltre a $s0-7, $sp, $gp e
$ra, i quali avranno i loro valori preservati.

La ricorsione in MIPS

6. Pulire lo stack e ritornare il risultato

1

N}

1w $t0, 8($sp) # Recuperare il primo risultato
della funzione

add $v0, $vO0, $tO

lw $ra, 0($sp) # Recuperare il return address
addi $sp, $sp, 12

jr $ra

Listing 6: Codice assembly MIPS per la pulizia dello stack.

Dal MIPS al C

Nel seguente codice assembly MIPS, il valore nel registro $a0 & un input

e il valore nel registro $v0 e I'output.

1. Ritradurre la seguente funzione MIPS al codice C equivalente

1 func:

2 addi $t0,
3 addi $vo,
4 Loop:

5 sle $t1,
6 beq $t1,
7 mul $vO ,
8 addi $t0,
9 j Loop
10 Exit:

11 jr $ra

$zero, 1
$zero, 1

$t0, $a0
$zero, Exit
$v0, $t0
$t0, 1

= 1

= 1

Settare $tl a 1 se (1 <= arg)
Uscire dal loop se (i > arg)
v k= |

R

Ciclo

Listing 7: Codice assembly MIPS

2. Quale funzione matematica esegue questo codice?

1. Ritradurre la seguente funzione MIPS al codice C equivalente

1

int func(int arg) {

int v = 1, 1i;

for (i = 1; i <= arg; i+) {
v = v k% ij;

¥

return v;

Listing 8: Codice C della soluzione.

2. Il codice esegue il fattoriale per argomenti non-negativi

Esercizi di laboratorio

Istruzioni

Ogni esercizio & descritto tramite un programma in linguaggio C.

Se la realizzazione di un 1/O non e richiesta, le variabili possono essere
inizializzate con istruzioni assembler o con direttive (nel caso degli array).
Si raccomanda di seguire le convenzioni del linguaggio assembler specie
per cio che riguarda le funzioni.

Si raccomanda di utilizzare i commenti per indicare la corrispondenza fra
variabili del C e registri.

| commenti sono anche utili per descrivere cosa volete fare nel codice.

Esercizio 1

Programma che calcola il massimo fra 3 interi. L'esercizio deve essere
risolto senza utilizzare macro (bge ...).

1 int main() {

2 int a, b, c;

3 int x; /* massimo */

4

5 a =4; b = 10; c = 8;

6 /* acquisisce a, b, ¢ (non importa farlo) */
7 X = c;

8 if ((a > b) && (a > c))

9 X = aj;

10 else

11 if (b > ¢)

12 X = b;

13 /* stampa x (non importa farlo) x*/
14}

Listing 9: Codice C per il calcolo della del massimo fra 3 interi.

Esercizio 2

Calcolo del massimo di un vettore. Anche in questo caso non si devono
utilizzare macro.

1 int main() {
2 int array[8] = {0,1,4,2,7,8,4,6};

3 int i, x; /* x = massimo del vettore */
4

5 /* acquisisce array (da non fare) */
6 i=1;

7 x = array[0];

8 while (i < 8) {

9 if (array[i] > x)

10 x = arrayl[il;

11 i=1i+ 1;

12 ¥

13 /* stampa x (da non fare) */

14 ¥

Listing 10: Codice C per il calcolo della del massimo di un vettore.

10

Esercizio 3

Funzione che calcola la distanza fra due interi.

1 int main() {

2 int x, y;

3 int v;

4

5 x =T7; y = 4;

6 /* acquisisce x e y (da non fare) */
7 v = dist(x, y);

8 }

10 int dist(int x, int y) {
11 int result;

12 if (a > b)

13 result = a - b;
14 else

15 result = b - aj;
16 return result;

17 }

Listing 11: Codice C per il calcolo della distanza fra due interi.
11

Esercizio 4

Programma che calcola il numero di uni presenti in un intero a 32 bit.

1 int main() {

2 int i, n, x, y;

4 n =1i = 0;

5 x = 18; /* intero di cui si calcola il no. di uni */
6

7 while (1 < 32) {

8 y =x & 1;

9 n =mn+y;

10 X = x >> 1;

11 i=1i+ 1;

12 }

Listing 12: Codice C per il calcolo del numero di uni in un intero a 32 bit.

12

Soluzioni

Esercizio 1 (1)

1 Ptlexst

2 # a, b, c, x mappati su $s0, $s1, $s2, $s3
3 addi $s0, $zero, 4

4 addi $s1, $zero, 10

5 addi $s2, $zero, 8

6

7 addi $s3, $s2, O

8

9 slt $t0, $s1, $s0 # b < a
10 slt $t1, $s2, $s0 # c < a
11 and $t2, $t0, $t1 # &&

12

13 bne $t2, $zero, labelO

14 slt $t3, $s2, $si # c < Db
15 beq $t3, $zero, end

16 addi $s3, $s1, O

17 j end

Listing 13: Codice assembly MIPS per il calcolo del massimo fra 3 interi (1).

13

Esercizio 1 (2)

1 label O: # (a > b) && (a > c)
2 addi $s3, $s0, O

3 end:

4

5 # non richiesto

6 addi $v0, $zero, 1
7 addi $a0, $s3, O

8 syscall

9

10 exit:

1 addi $v0, $zero, 10
12 syscall

Listing 14: Codice assembly MIPS per il calcolo del massimo fra 3 interi (2).

14

Esercizio 2 (1)

1 .data

2 array0O: .word 0,1,4,2,7,8,4,6
3 # i due vettori hanno la stessa dimensione
4

5 .text

6 # i in $s0, x in $s1

7

8 # indice i

9 addi $s0, $zero, 4

10 # inizializzo x

1 1w $s1, arrayO($zero)

12

13 # dimensione dell’array in byte
14 addi $t0, $zero, 32

Listing 15: Codice assembly MIPS per il calcolo del massimo di un vettore (1).

15

Esercizio 2 (2)

1 loop:

2 beq $s0, $t0, exit

3 # carico array[i] in $t2
4 lw $t2, array0($s0)
5 slt $t1, $s1, $t2

6 beq $t1, $zero, label # x >= arrayl[il
7 addi $s1, $t2, O

8

9 label:

10 addi $s0, $s0, 4

1 j loop

12

13 exit:

14 addi $v0, $zero, 10

15 syscall

Listing 16: Codice assembly MIPS per il calcolo del massimo di un vettore (2).

16

Esercizio 3 (1)

1 .text

2 main:

3 # $s0 = y

4 addi $s0, $zero, 7 # x

5 addi $s1, $zero, 4 #

6

7 # operazioni su $s0 e $si

8 addi $a0, $sO0, O # argomento 1

9 addi $al, $s1, O # argomento 2

10 jal dist # chiamata a funzione
1 addi $s2, $v0, O # valore di ritormno
12

13 exit:

14 addi $v0, $zero, 10

15 syscall

Listing 17: Codice assembly MIPS per il calcolo della distanza fra due interi

(1)-

17

Esercizio 3 (2)

1 dist:
2 addi $sp, $sp, -8 # fare spazio sullo stack per
memorizzare due registri

3 sw $t0, 0($sp) # salva $t0 sullo stack

4 sw $t1, 4($sp) # salva $t1 sullo stack

5 # non serve per i registri t
6 slt $t0, $al, $al # x >y

7 beq $t0, $zero, label

8 sub $t1, $a0, $al # x -y

9 J join

10 label:

1 sub $t1, $al, $al

12 join:

13 addi $vo, $t1, O

14 lw $t0, 0($sp) # recupera $t0 dallo stack

15 1w $t1, 4($sp) # recupera $t0 dallo stack

16 addi $sp, $sp, 8 # dealloca spazio dallo stack
17 jr $ra # ritorna al chiamante

Listing 18: Codice assembly MIPS per il calcolo della distanza fra due interi

(2)-

18

Esercizio 3 (3)

Attenzione ad indicare una corretta terminazione del programma:

1 exit:
2 addi $vO0, $zero, 10

3 syscall

alla fine del codice relativo al main.

Avendo una funzione, il rischio & che, dopo aver terminato |'esecuzione
del main, il programma riesegua il codice della funzione, entrando in un
loop infinito!

19

Esercizio 4

1 .text

2 addi $s0, $zero, -68 # x

3 addi $s1, $zero, O #y

4 addi $s2, $zero, O # n

5 addi $s3, $zero, O # i

6 addi $t0, $zero, 32

7

s loop:

9 beq $s3, $t0, exit

10 andi $t1, $s0, 1 #y=x&1
11 add $s2, $s2, $t1 #n=mn+y
12 srl $s0, $s0, 1 # = x > 1
13 addi $s3, $s3, 1

14 j loop

15

16 exit:

17 addi $v0, $zero, 10
18 syscall

Listing 19: Codice assembly MIPS per il numero di uni in un intero a 32 bit.

20

	Esercizio sulla ricorsione in MIPS
	Esercizi di laboratorio
	Soluzioni

