
Tutorato Architettura degli Elaboratori 06

Alberto Paparella1

15 Maggio 2025

1Dipartimento di Matematica e Informatica, Università degli studi di Ferrara

Funzioni

Insieme dei Registri del MIPS

Nome N° Utilizzo

$0 0 Il valore costante 0

$at 1 Temporaneo riservato all’assemblatore (assembler temporary)

$v0-$v1 2-3 Valori di ritorno delle funzioni

$a0-$a3 4-7 Argomenti delle funzioni

$t0-$t7 8-15 Temporanei

$s0-$s7 16-23 Variabili salvate

$t8-$t9 24-25 Altri temporanei

$k0-$k1 26-27 Temporanei riservati al sistema operativo

$gp 28 Puntatore globale (global pointer)

$sp 29 Puntatore allo stack (stack pointer)

$fp 30 Puntatore al frame (frame pointer)

$ra 31 Indirizzo di ritorno della funzione (return address)

1

Chiamate a funzioni

1 int main() {

2 simple ();

3 a = b + c;

4 }

5

6 void simple () {

7 return;

8 }

Listing 1: Codice C.

1 0x00400200 main: jal simple

2 0x00400204 add $s0 , $s1 , $s1
3 ...

4 0x00401020 simple: jr $ra

Listing 2: Codice assembly MIPS.

2

Chiamate a funzioni

1 0x00400200 main: jal simple

2 0x00400204 add $s0 , $s1 , $s1
3 ...

4 0x00401020 simple: jr $ra

Listing 3: Codice assembly MIPS.

• jal salta a simple e setta $ra = PC + 4 = 0x00400204

• jr $ra salta all’indirizzo contenuto in $ra (0x00400204)

3

Argomenti in ingresso e valore di ritorno

• Convenzioni MIPS:

• valore degli argomenti: $a0-$a3

• valore di ritorno: $v0-$v1

1 int main() {

2 int y;

3 ...

4 y = diffofsums (2, 3, 4, 5); // 4 argomenti

5 ...

6 }

7

8 int diffofsums(int f, int g, int h, int i) {

9 int result;

10 result = (f + g) - (h + i)

11 return result; // Valore di ritorno

12 }

Listing 4: Codice C.

4

Argomenti in ingresso e valore di ritorno

1 # $s0 = y

2 main:

3 ...

4 addi $a0 , $0, 2 # Argomento 0 = 2

5 addi $a1 , $0, 3 # Argomento 1 = 3

6 addi $a2 , $0, 4 # Argomento 2 = 4

7 addi $a3 , $0, 5 # Argomento 3 = 5

8 jal diffofsums # Chiamata a funzione

9 add $s0 , $v0 , $0 # y = valore di ritorno

10 ...

11

12 # $s0 = result

13 diffofsums:

14 add $t0 , $a0 , $a1 # $t0 = f + g

15 add $t1 , $a2 , $a3 # $t1 = h + i

16 sub $s0 , $t0 , $t1 # result = (f + g) - (h + i)

17 add $v0 , $s0 , $0 # Valore di ritorno in $v0
18 jr $ra # Ritorna al chiamante

Listing 5: Codice assembly MIPS.

5

Argomenti in ingresso e valore di ritorno

1 # $s0 = result

2 diffofsums:

3 add $t0 , $a0 , $a1 # $t0 = f + g

4 add $t1 , $a2 , $a3 # $t1 = h + i

5 sub $s0 , $t0 , $t1 # result = (f + g) - (h + i)

6 add $v0 , $s0 , $0 # Valore di ritorno in $v0
7 jr $ra # Ritorna al chiamante

Listing 6: Codice assembly MIPS.

• diffofsums sovrascrive 3 registri: $t0, $t1, $s0

• Questo viene chiamato effetto collaterale o side effect

• diffofsums può usare lo stack per salvare tali registri

6

Salvataggio e ripristino del codice dallo stack

1 # $s0 = result

2 diffofsums:

3 addi $sp , $sp , -12 # Allocare spazio sullo stack

per memorizzare 3 registri

4 sw $s0 , 8($sp) # Salva $s0 sullo stack

5 sw $t0 , 4($sp) # Salva $t0 sullo stack

6 sw $t1 , 0($sp) # Salva $t1 sullo stack

7 add $t0 , $a0 , $a1 # $t0 = f + g

8 add $t1 , $a2 , $a3 # $t1 = h + i

9 sub $s0 , $t0 , $t1 # result = (f + g) - (h + i)

10 add $v0 , $s0 , $0 # Valore di ritorno in $v0
11 lw $t1 , 0($sp) # Ristora $t1 dallo stack

12 lw $t0 , 4($sp) # Ristora $t0 dallo stack

13 lw $s0 , 8($sp) # Ristora $s0 dallo stack

14 addi $sp , $sp , 12 # Dealloca spazio dallo stack

15 jr $ra # Ritorna al chiamante

Listing 7: Codice assembly MIPS.

7

Convenzioni sui registri

Preservati dalla procedura

chiamata

Non preservati, eventualmente

salvati e ripristinati dal chia-

mante

$s0-$s7 $t0-$t9

$ra $a0-$a3

$sp $v0-$v1

stack sopra $sp stack sotto $sp

8

Salvataggio di registri da preservare sullo stack

• Seguendo la convenzione, si può salvare solo $s0

1 proc1:

2 addi $sp , $sp , -4 # Alloca spazio sullo stack per

salvare un registro

3 sw $s0 , 0($sp) # Salva $s0 sullo stack

4 # Non c’e’ bisogno di salvare $t0 o $t1
5 add $t0 , $a0 , $a1 # $t0 = f + g

6 add $t1 , $a2 , $a3 # $t1 = h + i

7 sub $s0 , $t0 , $t1 # result = (f + g) - (h + i)

8 add $v0 , $s0 , $0 # Valore di ritorno in $v0
9 lw $s0 , 0($sp) # Ristora $s0 dallo stack

10 addi $sp , $sp , 4 # Dealloca spazio dallo stack

11 jr $ra # Ritorna al chiamante

Listing 8: Codice assembly MIPS.

9

Chiamate a funzioni innestate

1 proc1:

2 addi $sp , $sp , -4 # Alloca spazio sullo stack

3 sw $ra , 0($sp) # Salva $ra sullo stack

4 jal proc2

5 ...

6 lw $ra , 0($sp) # Ristora $ra dallo stack

7 addi $sp , $sp , 4 # Dealloca spazio dallo stack

8 jr $ra # Ritorna al chiamante

Listing 9: Codice assembly MIPS.

10

Chiamate di funzioni ricorsive

1 int sum(int n) {

2 if (n <= 1)

3 return 1;

4 else

5 return (n + sum(n-1));

6 }

Listing 10: Codice C.

11

Chiamate di funzioni ricorsive

1 sum:

2 addi $sp , $sp , -8 # Alloca spazio sullo stack

3 sw $a0 , 4($sp) # Salva $a0
4 sw $ra , 0($sp) # Salva $ra
5 addi $t0 , $0, 2

6 slt $t0 , $a0 , $t0 # a <= 1 ?

7 beq $t0 , $0, else # no: salta ad else

8 addi $v0 , $0, 1 # yes: return 1

9 addi $sp , $sp , 8 # Ristora $sp
10 jr $ra # Ritorna

11 else:

12 addi $a0 , $a0 , -1 # n = n - 1

13 jal sum # Chiamata ricorsiva

14 lw $ra , 0($sp) # Ristora $ra
15 lw $a0 , 4($sp) # Ristora $a0
16 addi $sp , $sp , 8 # Ristora $sp
17 add $v0 , $a0 , $v0 # n + sum(n-1)

18 jr $ra # Ritorna

Listing 11: Codice assembly MIPS.

12

Stack durante la chiamata ricorsiva

• Procedura chiamata inizialmente con il valore 3

13

Scansione di un array lineare alla

ricerca del massimo e del minimo

Esercizio 1 (calcolo del massimo)

Tradurre il seguente codice C per la scansione di un array lineare alla

ricerca dell’elemento maggiore in ASM (continua alla slide successiva):

1 #include <stdio.h>

2

3 // Calcolo del massimo

4 int max(int a[], int dim) {

5 int max = NULL;

6 int i;

7

8 for (i = 0; i < dim; i++) {

9 if (max < a[i]) {

10 max = a[i];

11 }

12 }

13

14 return max;

15 }

Listing 12: Codice C per il calcolo del massimo (1).

14

Esercizio 1 (calcolo del massimo)

1 // Programma principale per verificare le funzioni

2 int main() {

3 int massimo;

4 int a[10] = {10,11,13,14,17,9,7,1,4,99};

5

6 massimo = max(a, 10);

7 printf("\nIl massimo dell’array e’ $d\n", massimo);

8

9 return 0;

10 }

Listing 13: Codice C per il calcolo del massimo (2).

15

Soluzione

1 . d a t a

2 a r r a y : .word 10 , 11 , 13 , 14 , 17 , 9 , 7 , 1 , 4 , 99

3 s i z e : .word 10

4 SDR: . a s c i i z ” I l maggiore v a l e \n”
5

6 . t e x t

7 Main :

8 lw $a0 , s i z e

9 l a $a1 , a r r a y

10 j a l t r o vamagg i o r e

11 add $t0 , $v0 , $ze ro # Mi s a l v o i l v a l o r e d i r i t o r n o pe r che ’

l o vado a s o v r a s c r i v e r e pe r ch iamare una s y s c a l l

12 l a $a0 , SDR

13 l i $v0 , 4

14 s y s c a l l

15 add $a0 , $t0 , $ze ro
16 l i $v0 , 1

17 s y s c a l l

18 l i $v0 , 10

19 s y s c a l l

Listing 14: Codice assembly MIPS per il calcolo del massimo (1).

16

Soluzione

1 t r ovamagg i o r e :

2 l i $t3 , 0 # I n d i c e i n by te d e l l ’ a r r a y e r i u t i l i z z o pe r l ’

i n d i r i z z o a s s o l u t o d e l pr imo e lemento

3 l i $t2 , 0 # Memorizza i l maggiore

4 l i $t1 , 0 # Memorizza g l i e l emen t i d e l l ’ a r r a y

5 l i $t0 , 0 # I n d i c e d i s c o r r imen t o d e l l ’ a r r a y

6 For l oop :

7 beq $t0 , $a0 , End fo r l oop # Se l ’ i n d i c e c o r r i s p o n d e a l numero

d i e l emen t i , e s co

8 s l l $t3 , $t0 , 2 # Formo l ’ i n d i c e pe r by te

9 add $t3 , $a1 , $t3 # I n d i r i z z o e lemento

10 lw $t1 , 0($t3)

11 # i f −then

12 s l t $t4 , $t1 , $t2 # $t4 v a l e 1 se temp < maggiore

13 bne $t4 , $zero , n u l l a d a f a r e

14 add $t2 , $t1 , $ze ro # Agg iorna i l max

15 n u l l a d a f a r e :

16 add i $t0 , $t0 , 1

17 j Fo r l oop

18 End fo r l oop :

19 add $v0 , $t2 , $ze ro
20 j r $ ra

Listing 15: Codice assembly MIPS per il calcolo del massimo (2).

17

Momenti salienti

Incremento dell’indice di scansione di un array di 4 byte alla volta

moltiplicando l’indice incrementale tramine “sll”.

• In assembler non basta l’indice i per muoverci fra gli elementi di un

array: sappiamo infatti che ogni elemento sarà allocato in modo

sequenziale ed occuperò esattamente 4 byte.

• Per questo dobbiamo non solo tenere traccia del valore dell’indice i ,

in modo da incrementarlo ad ogni ciclo di 1, ma dovremo poi

moltiplicarlo per 4 prima di sommarlo all’indirizzo di memoria a cui

eravamo arrivati, partendo dall’indirizzo del primo elemento

dell’array.

• Ciò può essere fatto facilmente con l’istruzione “sll”, che “shifta” il

valore contenuto nel registro di due posizioni, aggiungendo due zeri

come bit meno significativi, effettuando di fatto una moltiplicazione

per 4.

18

Momenti salienti

• Nel nostro esercizio, i è contenuto nel registro $t0 ed è

inizializzato a 0. Ad ogni ciclo, prima di tutto controllo se i è uguale

al numero di elementi dell’array; nel caso sia vero significa infatti che

sono arrivato alla fine dell’array, e devo quindi uscire dal ciclo for.

• Dopodichè, la prima cosa che faccio è moltiplicare il valore di i per 4

utilizzando l’istruzione “sll”, salvando il risultato in un altro registro,

in questo caso $s3.

• Nella riga successiva vado poi ad aggiungere questo valore

all’indirizzo del primo elemento dell’array: in questo modo posso

calcolare efficientemente ad ogni ciclo dove si trova in memoria

l’elemento dell’array di cui ho bisogno, scorrendo ad ogni ciclo l’array

di una posizione.

• Infine, prima di effettuare la jump all’inizio del Forloop e quindi

ripetere il ciclo, vado ad aggiornare il valore di i in $t0, che non è

stato toccato.

19

Momenti salienti

20

Momenti salienti

Realizzazione del ciclo “if-then” in Assembler.

• Una volta caricato il nuovo elemento dell’array in $t1, lo confronto

con quello che al momento considero il maggiore, contenuto in $t2,

ed inizializzato a 0, utilizzando l’istruzione “slt” e salvando il

risultato in $s4.

• Questo sarà 1 se il valore del primo registro ($t1) è minore del

valore contenuto nel secondo ($t2), e quindi semanticamente se

l’elemento corrente è minore di quello considerato massimo.

• Alla riga successiva indico infatti che se $t4 non contiene 0 (e

quindi se contiene 1, in pratica se l’elemento corrente non è il nuovo

massimo), allora salta all’etichetta “nulladafare”

21

Momenti salienti

• In pratica, sto saltando l’istruzione di aggiornamento del massimo ed

andando direttamente alla fine del ciclo for, aggiornando l’indice e

ricominciando un nuovo ciclo.

• Se invece $t4 contiene proprio 0, allora $t1 è il nuovo massimo, e

devo salvare il suo contenuto in $t2 prima di aggiornare l’indice e

cominciare un nuovo ciclo.

• Nota bene: dopo l’aggiornamento del massimo, il programma

entrerà esattamente in “nulladafare”!

22

Esercizio 2 (calcolo del minimo) - per casa

Tradurre il seguente codice C per la scansione di un array lineare alla

ricerca dell’elemento minore in ASM (continua alla slide successiva):

1 #include <stdio.h>

2

3 // Calcolo del minimo

4 int min(int a[], int dim) {

5 int min = NULL;

6 int i;

7

8 for (i = 0; i < dim; i++) {

9 if (min > a[i]) {

10 min = a[i];

11 }

12 }

13

14 return min;

15 }

Listing 16: Codice C per il calcolo del minimo (1).

23

Esercizio 2 (calcolo del minimo) - per casa

1 // Programma principale per verificare le funzioni

2 int main() {

3 int minimo;

4 int a[10] = {10,11,13,14,17,9,7,1,4,99};

5

6 minimo = min(a, 10);

7 printf("\nIl minimo dell’array e’ $d\n", minimo);

8

9 return 0;

10 }

Listing 17: Codice C per il calcolo del minimo (2).

24

	Funzioni
	Scansione di un array lineare alla ricerca del massimo e del minimo

