Tutorato Architettura degli Elaboratori 06

Alberto Paparellal
15 Maggio 2025

! Dipartimento di Matematica e Informatica, Universitd degli studi di Ferrara

Funzioni

Insieme dei Registri del MIPS

Nome N° Utilizzo
$0 0 Il valore costante 0
$at 1 Temporaneo riservato all’assemblatore (assembler temporary)
$v0-$vi 2-3 Valori di ritorno delle funzioni
$a0-%a3 4-7 Argomenti delle funzioni
$t0-$t7 | 8-15 | Temporanei
$s0-$s7 | 16-23 | Variabili salvate
$t8-$t9 | 24-25 | Altri temporanei
$k0-$k1 | 26-27 | Temporanei riservati al sistema operativo
$gp 28 Puntatore globale (global pointer)
$sp 29 Puntatore allo stack (stack pointer)
$fp 30 Puntatore al frame (frame pointer)
$ra 31 Indirizzo di ritorno della funzione (return address)

Chiamate a funzioni

int main() {
simple () ;
a =>b + c;

void simple () {

return;
}
Listing 1: Codice C.
0x00400200 main: jal simple
0x00400204 add $s0, $s1, $si

0x00401020 simple: jr $ra

Listing 2: Codice assembly MIPS.

Chiamate a funzioni

1 0x00400200 main: jal simple
> 0x00400204 add $s0, $s1, $si

4 0x00401020 simple: jr $ra

Listing 3: Codice assembly MIPS.

e jal salta a simple e setta $ra = PC 4 4 = 0x00400204
e jr $ra salta all'indirizzo contenuto in $ra (0x00400204)

sso e valore di ritorno

e Convenzioni MIPS:

e valore degli argomenti: $a0-$a3
e valore di ritorno: $v0-$v1

1 int main() {

2 int y;

4 y = diffofsums(2, 3, 4, 5); // 4 argomenti

¢ int diffofsums(int £, int g, int h, int i) {

9 int result;

10 result = (f + g) - (h + 1)

11 return result; // Valore di ritormno
12 }

Listing 4: Codice C.

Argomenti in ingresso

$a0, $0, 2
addi $al, $0, 3
addi $a2, $0, 4
addi $a3, $0, 5
jal diffofsums
add $s0, $vO, $0
$s0 = result
diffofsums:
add $t0, $a0, $al #
add $t1, $a2, $a3 #
sub $s0, $t0, $t1 #
add $vO0, $s0, $0 #
jr $ra #

e valore di ritorno

Argomento 0 = 2

Argomento 1 = 3

Argomento 2 = 4

Argomento 3 = 5

Chiamata a funzione

y = valore di ritorno

$t0 = f + g

$t1 = h + i

result = (£ + g) - (h + 1)
Valore di ritormo in $vO
Ritorna al chiamante

Listing 5: Codice assembly MIPS.

Argomenti in ingresso e valore di ritorno

1

$s0 = result

diffofsums:
add $to0,
add $t1,
sub $s0,
add $voO,
jr $ra

$a0,
$a2,
$t0,
$s0,

$al
$a3
$t1
$0

#
#
#
#
#

$t0 = £ + g

$t1 = h + i

result = (f + g) - (h + i)
Valore di ritormo in $vO
Ritorna al chiamante

Listing 6: Codice assembly MIPS.

e diffofsums sovrascrive 3 registri: $t0, $t1, $s0O

e Questo viene chiamato effetto collaterale o side effect

e diffofsums puo usare lo stack per salvare tali registri

Salvataggio e ripristino del codice dallo stack

1
2

3

o

$s0 = result
diffofsums:

$sp, -12 # Allocare spazio sullo stack

per memorizzare 3 registri

addi $sp,
swW $s0,
sw $t0,
sw $t1,
add $to0,
add $t1,
sub $s0,
add $vo,
1w $t1,
1w $t0,
1w $s0,
addi $sp,
jr $ra

8($sp) # Salva $s0 sullo stack
4($sp) # Salva $t0 sullo stack
0($sp) # Salva $tl1 sullo stack

$a0, $at # $t0 = f + g

$a2, $a3 # $t1 = h + i

$t0, $t1 # result = (f + g) - (h + 1)
$s0, $0 # Valore di ritorno in $vO
0($sp) # Ristora $tl1 dallo stack
4($sp) # Ristora $t0 dallo stack
8($sp) # Ristora $s0 dallo stack
$sp, 12 # Dealloca spazio dallo stack

Ritorna al chiamante

Listing 7: Codice assembly MIPS.

Convenzioni sui registri

Preservati dalla procedura | Non preservati, eventualmente

chiamata salvati e ripristinati dal chia-
mante

$s0-$s7 $t0-$t9

$ra $a0-$a3

$sp $vo-$vi

stack sopra $sp stack sotto $sp

Salvataggio di registri da preservare sullo stack

e Seguendo la convenzione, si puo salvare solo $s0

1 procl:

»

addi

$sp, $sp, -4 # Alloca spazio sullo stack per

salvare un registro

SW

Non c’

add
add
sub
add
1w
addi

jr $ra

$s0, 0($sp) # Salva $s0 sullo stack

e’ bisogno di salvare $t0 o $ti

$t0, $a0, $ail # $t0 = £ + g

$t1, $a2, $a3 # $t1 = h + i

$s0, $t0o, $t1 # result = (f + g) - (h + i)

$v0o, $s0, $0 # Valore di ritormo in $vO
$s0, 0($sp) # Ristora $s0 dallo stack
$sp, $sp, 4 # Dealloca spazio dallo stack

Ritorna al chiamante

Listing 8: Codice assembly MIPS.

Chiamate a funzioni innestate

1 procl:

2 addi $sp, $sp, -4 # Alloca spazio sullo stack

3 sw $ra, 0($sp) # Salva $ra sullo stack

4 jal proc2

5 500

6 1w $ra, 0($sp) # Ristora $ra dallo stack

7 addi $sp, $sp, 4 # Dealloca spazio dallo stack
8 jr $ra # Ritorna al chiamante

Listing 9: Codice assembly MIPS.

10

Chiamate di funzioni ricorsive

1 int sum(int n) {
2 if (n <= 1)

3 return 1;
4 else

5 return (n + sum(n-1));

Listing 10: Codice C.

11

Chiamate di funzioni ricorsive

2 addi $sp, $sp, -8 # Alloca spazio sullo stack
3 sw $a0, 4($sp) # Salva $a0

4 sw $ra, 0($sp) # Salva $ra

5 addi $t0, $0, 2

6 slt $t0, $al0, $tO # a <=1 7

7 beq $t0, $0, else # no: salta ad else
8 addi $v0o, $0, 1 # yes: return 1

9 addi $sp, $sp, 8 # Ristora $sp

10 jr $ra # Ritorna

1 else:

12 addi $a0, $a0, -1 # n=mn -1

13 jal sum # Chiamata ricorsiva
14 1w $ra, 0($sp) # Ristora $ra

15 lw $a0, 4($sp) # Ristora $a0

16 addi $sp, $sp, 8 # Ristora $sp

17 add $v0o, $a0, $vO # n + sum(n-1)

18 jr $ra # Ritorna

Listing 11: Codice assembly MIPS.

12

Stack durante la chiamata ricorsiva

e Procedura chiamata inizialmente con il valore 3

Address Data Address Data Address Data
FC «—$sp FC FC <«—$sp sv0= 6
F8 F8 | $a0 (0x3) F8 | $a0 (0x3)
F4 F4 | sra F4 | sra “«—3$sp g0 5 en
FO FO | $a0 (0x2) FO | $a0 (0x2)
EC EC| $ra (0xBC) EC| $ra (0xBC) i;‘gz 22 o
E8 E8 | $a0 (0x1) E8 | $a0 (0x1)
E4 E4 | $ra (0xBC) | «—3$sp E4 | s$ra (0xBC) 2?,% Z i
EO EO EO
DC DC DC

13

Scansione di un array lineare alla
ricerca del massimo e del minimo

Esercizio 1 (calcolo del massimo)

Tradurre il seguente codice C per la scansione di un array lineare alla
ricerca dell’elemento maggiore in ASM (continua alla slide successiva):

#include <stdio.h>

// Calcolo del massimo
int max(int al], int dim) {
int max = NULL;

int i;

for (i = 0; i < dim; i++) {
if (max < al[i]) {

max

alil;

return max;

Listing 12: Codice C per il calcolo del massimo (1).

14

Esercizio 1 (calcolo del massimo)

1 // Programma principale per verificare le funzioni
2 int main() {

3 int massimo;

4 int af10] = {10,11,13,14,17,9,7,1,4,99};

6 massimo = max(a, 10);

7 printf ("\nIl massimo dell’array e’ $d\n", massimo);
8

9 return O;

10 }

Listing 13: Codice C per il calcolo del massimo (2).

15

[E I U S

.data
array: .word 10, 11, 13, 14, 17, 9, 7, 1, 4, 99

size: .word 10

SDR: .asciiz "Il maggiore vale \n”
.text

Main :

lw $a0, size
la $al, array
jal trovamaggiore

add $t0, $v0, $zero # Mi salvo il valore di ritorno perche’
lo vado a sovrascrivere per chiamare una syscall

la $a0, SDR

li $v0, 4

syscall

add $a0, $t0, $zero

li $v0, 1

syscall

li $v0, 10

syscall

Listing 14: Codice assembly MIPS per il calcolo del massimo (1).

16

1
2

8]
4
B
6
7

trovamaggiore:
Ii $t3, 0 # Indice in byte dell "array e riutilizzo per |’
indirizzo assoluto del primo elemento
li $t2, 0 # Memorizza il maggiore
li $tl1, 0 # Memorizza gli elementi dell "array
Ii $t0, 0 # Indice di scorrimento dell "array

Forloop:
beq $t0, $a0, Endforloop # Se |'indice corrisponde al numero
di elementi, esco
sl $t3, $t0, 2 # Formo | 'indice per byte

add $t3, $al, $t3 # Indirizzo elemento

Iw $t1, 0($t3)

if—then

slt $t4, $t1, $t2 # $t4 vale 1 se temp < maggiore
bne $t4, $zero, nulladafare

add $t2, $tl, $zero # Aggiorna il max
nulladafare:

addi $t0, $t0, 1

j Forloop
Endforloop:

add $v0, $t2, S$zero

jr S$ra

Listing 15: Codice assembly MIPS per il calcolo del massimo (2).
17

Mome salienti

Incremento dell'indice di scansione di un array di 4 byte alla volta
moltiplicando I'indice incrementale tramine “sll”.

e In assembler non basta l'indice i per muoverci fra gli elementi di un
array: sappiamo infatti che ogni elemento sara allocato in modo
sequenziale ed occupero esattamente 4 byte.

e Per questo dobbiamo non solo tenere traccia del valore dell’indice i,
in modo da incrementarlo ad ogni ciclo di 1, ma dovremo poi
moltiplicarlo per 4 prima di sommarlo all'indirizzo di memoria a cui
eravamo arrivati, partendo dall’indirizzo del primo elemento
dell'array.

e Cio puo essere fatto facilmente con l'istruzione “sllI”, che “shifta” il
valore contenuto nel registro di due posizioni, aggiungendo due zeri
come bit meno significativi, effettuando di fatto una moltiplicazione
per 4.

18

Momenti salienti

e Nel nostro esercizio, i/ & contenuto nel registro $t0 ed &
inizializzato a 0. Ad ogni ciclo, prima di tutto controllo se i/ & uguale
al numero di elementi dell'array; nel caso sia vero significa infatti che
sono arrivato alla fine dell’array, e devo quindi uscire dal ciclo for.

e Dopodiche, la prima cosa che faccio & moltiplicare il valore di i per 4
utilizzando l'istruzione “slI”, salvando il risultato in un altro registro,
in questo caso $s3.

e Nella riga successiva vado poi ad aggiungere questo valore
all'indirizzo del primo elemento dell’array: in questo modo posso
calcolare efficientemente ad ogni ciclo dove si trova in memoria
I'elemento dell’array di cui ho bisogno, scorrendo ad ogni ciclo I'array
di una posizione.

e Infine, prima di effettuare la jump all’inizio del Forloop e quindi
ripetere il ciclo, vado ad aggiornare il valore di / in $t0, che non &
stato toccato.

19

Momenti salienti

allocato all’indirizzo 0x10010000 (base)

allocato all’indirizzo 0x10010004 (base + 4)

allocato all’indirizzo 0x10010008 (base + 8)

#...
allocato all’indirizzo base + (n-1)*4

20

Momenti salienti

Realizzazione del ciclo “if-then” in Assembler.

e Una volta caricato il nuovo elemento dell'array in $t1, lo confronto
con quello che al momento considero il maggiore, contenuto in $t2,
ed inizializzato a 0, utilizzando I'istruzione “slt” e salvando il

risultato in $s4.

e Questo sara 1 se il valore del primo registro ($t1) & minore del
valore contenuto nel secondo ($t2), e quindi semanticamente se
I'elemento corrente & minore di quello considerato massimo.

e Alla riga successiva indico infatti che se $t4 non contiene 0 (e
quindi se contiene 1, in pratica se |'elemento corrente non & il nuovo
‘nulladafare”

massimo), allora salta all'etichetta

21

Momenti salienti

e |n pratica, sto saltando I'istruzione di aggiornamento del massimo ed
andando direttamente alla fine del ciclo for, aggiornando I'indice e
ricominciando un nuovo ciclo.

e Se invece $t4 contiene proprio 0, allora $t1 & il nuovo massimo, e
devo salvare il suo contenuto in $t2 prima di aggiornare l'indice e
cominciare un nuovo ciclo.

e Nota bene: dopo I'aggiornamento del massimo, il programma
entrera esattamente in “nulladafare”!

22

Esercizio 2 (calcolo del minimo) - per casa

Tradurre il seguente codice C per la scansione di un array lineare alla
ricerca dell’elemento minore in ASM (continua alla slide successiva):

#include <stdio.h>

// Calcolo del minimo
int min(int all, int dim) {
int min = NULL;

int i;

for (i = 0; i < dim; i++) {
if (min > al[i]) {

min

alil;

return min;

Listing 16: Codice C per il calcolo del minimo (1).

23

Esercizio 2 (calcolo del minimo) - per casa

1 // Programma principale per verificare le funzioni
2 int main() {

3 int minimo;

4 int af10] = {10,11,13,14,17,9,7,1,4,99};

6 minimo = min(a, 10);

7 printf ("\nIl minimo dell’array e’ $d\n", minimo) ;
8

9 return O;

10 }

Listing 17: Codice C per il calcolo del minimo (2).

24

	Funzioni
	Scansione di un array lineare alla ricerca del massimo e del minimo

