
Tutorato Architettura degli Elaboratori 05

Alberto Paparella1

8 Maggio 2025

1Dipartimento di Matematica e Informatica, Università degli studi di Ferrara

Tutorial sulle funzionalità di base

del simulatore MARS - Parte 2

Syscall

• Le syscall sono letteralmente chiamate al sistema operativo, che

servono principalmente per operazioni di input e output

• MARS emula queste chiamate di sistema

• Esistono diversi tipi di syscall, identificate da un numero, e

funzionano in questo modo:

1. carichiamo in un apposito registro il codice della syscall

2. carichiamo gli eventuali argomenti in appositi registri

3. chiamiamo la syscall

4. recuperiamo gli eventuali valori di ritorno dai registri di risultato

• Trovate l’elenco completo di tutte le syscall al sito: https:

//dpetersanderson.github.io/Help/SyscallHelp.html

1

https://dpetersanderson.github.io/Help/SyscallHelp.html
https://dpetersanderson.github.io/Help/SyscallHelp.html

Syscall “termina programma”

Servizio Codice in $v0 Argomenti Risultato

exit (termina l’esecuzione) 10

• Emula la chiamata al sistema operativo che causa la terminazione

del programma

1 .text

2 addi $v0 , $zero , 10

3 syscall

2

Syscall “stampa di un intero”

Servizio Codice in $v0 Argomenti Risultato

stampa intero 1 $a0: intero da stampare

• Il codice della syscall va nel registro $v0, mentre il numero intero da

stampare va in $a0

1 .text

2 addi $a0 , $zero , 42 # Carichiamo il valore da

stampare in $a0
3 addi $v0 , $zero , 1 # Carichiamo il codice della

syscall in $v0
4 syscall # Invochiamo la syscall con

codice 1

5 # Risultato: stampa 42

3

Più semplice con le Pseudo-Istruzioni!

• Con “load immediate (li)” posso caricare una costante in un registro

1 .text

2 li $a0 , 42 # Carichiamo il valore da stampare in $a0
3 li $v0 , 1 # Carichiamo il codice della syscall in $v0
4 syscall # Invochiamo la syscall con codice 1

5 # Risultato: stampa 42

• Con l’estensione della semantica di “load word (lw)” posso caricare

direttamente un dato dalla memoria in un registro

1 .data

2 A: .word 42 # Allocazione di un intero inizializzato

a 42

3

4 .text

5 li $a0 , 42 # Carichiamo il valore da stampare in $a0
6 li $v0 , 1 # Carichiamo il codice della syscall in $v0
7 syscall # Invochiamo la syscall con codice 1

8 # Risultato: stampa 42

4

Syscall “stampa stringa”

Servizio Codice in $v0 Argomenti Risultato

stampa stringa 4 $a0: indirizzo della stringa null-

terminated da stampare

• Utilizziamo la pseudo-istruzione “load address (la)”, che carica

l’indirizzo di una locazione di memoria in un registro

1 .data

2 stringa: .asciiz "Ciao\n" # Allocazione di una stringa

in memoria

3

4 .text

5 la $a0 , stringa # Carichiamo l’indirizzo di ‘‘stringa ’’

in $a0
6 li $v0 , 4 # Carichiamo il codice della syscall in $v0
7 syscall # Invochiamo la syscall con codice 4

8 # Risultato: stampa la stringa

5

Syscall “leggi intero”

Servizio Codice in $v0 Argomenti Risultato

leggi intero 5 $v0 contiene l’intero da leggere

• L’intero letto da standard input viene reso disponibile sul registro $v0

1 .text

2 li $v0 , 5 #Carichiamo il codice della syscall in $v0
3 syscall # Invochiamo la syscall con codice 5

4 # Valore letto in $v0
5

6 # Stampo il valore letto

7 add $a0 , $v0 , $zero # Travaso del valore letto in $a0
8 li $v0 , 1 # Syscall per la scrittura di un intero

9 syscall # Stampa il valore letto

6

Syscall “leggi stringa”

Servizio Codice in $v0 Argomenti Risultato

leggi stringa 8 $a0: indirizzo del buffer di input -

$a1: massimo numero di caratteri da

leggere

• Occorre riservare un buffer in zona dati

• Specificare l’argomento “n” per leggere “n-1” caratteri

1 .data

2 stringa: .asciiz

3

4 .text

5 li $v0 , 8 # Carichiamo il codice della syscall in $v0
6 la $a0 , stringa # Indirizzo del buffer

7 li $a1 , 5 # Numero di caratteri da leggere (piu’ uno)

8 syscall # Invochiamo la syscall con codice 5

9

10 li $v0 , 4 # Stampo la stringa letta

11 syscall

7

Esercizio

• Inserire uno spazio tra la stringa letta e la stringa scritta

• Attenzione alla gestione della memoria!

8

Soluzione

1 .data

2 stringa: .asciiz

3 .space 5

4 separatore: .asciiz "\n"

5

6 .text

7 li $v0 , 8 # Carichiamo il codice della syscall in $v0
8 la $a0 , stringa # Inidirizzo del buffer

9 li $a1 , 5 # Numero di caratteri da leggere (piu’ uno)

10 syscall # Invochiamo la syscall con codice 5

11

12 li $v0 , 4 # Stampo il separatore

13 move $t0 , $a0 # Salvo l’indirizzo della stringa

acquisita

14 la $a0 , separatore # Carico l’indirizzo del separatore

15 syscall # Stampo il separatore

16

17 move $a0 ,$t0 # Ripristino l’indirizzo della

stringa acquisita

18 syscall # Stampo la stringa acquisita

9

Assemblatore

1. Programma scritto in linguaggio di alto livello (e.g., C)

2. Compilatore C

3. Programma scritto in linaugaggio Assembly (per il MIPS)

4. Assemblatore

5. Programma scritto in linguaggio macchina binario (per il MIPS)

L’assemblatore si occupa di:

• Generazione del linguaggio macchina

• Generazione degli indirizzi assoluti di memoria

• Gestione della endianess e degli allineamenti in memoria

• Trasformazione delle pseudo-istruzioni in istruzioni dell’ISA

10

Pseudo-Istruzioni

• Ci sono sitruzioni assembler che non sono di facile implementazione

in hardware

• Difatti, non fanno parte del set di istruzioni (e.g., dell’ISA del MIPS),

ma sono istruzioni astratte che l’Assembler mette a disposizione:

• esse vengono poi tradotte dall’Assemblatore nelle istruzioni che

l’architettura MIPS “sa” eseguire

• esse rendono più agevole la vita al programmatore, perchè il loro

significato è intuitivo, e corrispondono ad operazioni che il

programmatore si trova ad usare frequentemente

• per ogni istruzione, il text editore di MARS suggerisce sia la

disponibilità, sia la sintassi dei vari comandi, basta scrivere il nome

del comando nell’editor e compare in sovraimpressione un

mini-tutorial del comando stesso, se disponibile

• A queste istruzioni siamo il nome di pseudo-istruzioni

11

Pseudo-Istruzioni

• Sono istruzioni assembler virtuali, che l’assemblatore mappa con

facilità nelle istruzioni-macchina dell’Assembler reale

• Sono un primo banale livello di astrazione (come le label).

blt $1, $2, spi se $1 < $s2 salta salta se strettamente minore

bgt $1, $2, spi se $1 > $s2 salta salta se strettamente maggiore

ble $1, $2, spi se $1 ≤ $s2 salta salta se minore o uguale

bge $1, $2, spi se $1 ≥ $s2 salta salta se maggiore o uguale

Table 1: Pseudo-istruzioni per il salto condizionato.

12

Pseudo-Istruzioni

lw $1, etichetta $1 := mem ($gp + spi di etichetta) carica parola (32 bit)

sw $1, etichetta mem($gp + spi di etichetta) := $1 memorizza parola (32 bit)

Table 2: Pseudo-istruzioni per il trasferimento tra processore e memoria.

li $1, const $1 := const (32 bit) carica costante a 32 bit

la $1, indir $1 := indir (32 bit) carica indirizzo a 32 bit

Table 3: Pseudo-istruzioni per il caricamento di const/indirizzo in registro.

move $1, $2 $1 := $s2 copia registro

Table 4: Pseudo-istruzioni per il trasferimento tra registri.

13

Cicli

Esercizio 1 (for loop)

Si traduca in Assembler il seguente codice, scritto in linguaggio C,

corrispondente a uno statement di controllo di tipo for loop:

1 #include <stdio.h>

2

3 int main() {

4 for (int i=0; i<10; i++) {

5 printf("%d", i);

6 }

7 return 0;

8 }

14

Esercizio 2 (while loop)

Si traduca in Assembler il seguente codice, scritto in linguaggio C,

corrispondente a uno statement di controllo di tipo while loop:

1 #include <stdio.h>

2

3 int main() {

4 int i=0;

5 while (i<10) {

6 printf("%d", i++);

7 }

8 return 0;

9 }

15

Soluzioni

Esercizio 1 (for loop)

1 .data

2

3 .text

4 Main:

5 li $t0 , 0 # i in $t0
6 li $v0 , 1

7 ForLoop:

8 beq $t0 , 10, ExitForLoop

9 move $a0 , $t0
10 syscall

11 addi $t0 , $t0 , 1

12 j ForLoop

13 ExitForLoop:

14 li $v0 , 10

15 syscall

16

Esercizio 2 (while loop)

1 .data

2

3 .text

4 li $t0 , 0 # i in $t0
5 Main:

6 li $v0 , 1

7 WhileLoop:

8 bge $t0 , 10, ExitWhileLoop

9 move $a0 , $t0
10 syscall

11 addi $t0 , $t0 , 1

12 j WhileLoop

13 ExitWhileLoop:

14 li $v0 , 10

15 syscall

17

Nota bene

La soluzione dei due esercizi è praticamente la stessa.

Infatti, ogni ciclo for in C può essere convertito in un ciclo while.

18

	Tutorial sulle funzionalità di base del simulatore MARS - Parte 2
	Cicli
	Soluzioni

