
Tutorato Architettura degli Elaboratori 03

Alberto Paparella1

3 Aprile 2025

1Dipartimento di Matematica e Informatica, Università degli studi di Ferrara

Introduzione al Simulatore del

Set di Istruzioni MIPS “MARS”

Ambiente Integrato di Sviluppo (IDE)

• Per sviluppare un codice MIPS assembly, il progettista può avvalersi

di un ambiente integrato di sviluppo che lo aiuti a scrivere, testare,

compilare ed eseguire il codice.

• L’ambiente di sviluppo che useremo nelle prossime esercitazioni è

MARS, sviluppato alla Missouri State University per scopi didattici.

• Website: https://dpetersanderson.github.io/

1

https://dpetersanderson.github.io/

Il Simulatore MARS

• Mips Assembler and Runtime Simulator.

• E’ un simulatore del set di istruzioni MIPS sviluppato in ambito

accademico.

• Serve per sviluppare, simulare e fare il debugging di codice

Assembler del MIPS.

• Ultima versione scaricabile da:

https://dpetersanderson.github.io/Mars4_5.jar.

• Importante: richiede la Java Virtual Machine!

2

https://dpetersanderson.github.io/Mars4_5.jar

Il Simulatore MARS

• Se stai usando Windows, installa la Java Virtual Machine se non

l’hai ancora fatto (http://www.oracle.com/technetwork/java/

javase/downloads/index.html), dopodichè fai doppio clic

sull’eseguibile Jar Mars4_5 per aprirlo.

• Se stai usando Linux, installa Java SDK usando il tuo gestore dei

pacchetti (aptitude per Debian/Ubuntu, pacman per Arch, . . .);

per esempio, su Debian/Ubuntu puoi lanciare il comando:

sudo apt install default-jre

Poi lancia Mars con il comando:

java -jar Mars4_5.jar

3

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Il Simulatore MARS

4

Il Simulatore MARS

• Per compilare, clicca su Run e poi Assemble:

• Per eseguire, clicca su uno dei due tasti:

5

Hello, World!

• Scriviamo il nostro primo programma in Assembler:

1 .data

2 MyMessage: .asciiz "Hello , World!\n"

3

4 .text

5 Main:

6 li $v0 , 4

7 la $a0 , MyMessage

8 syscall

9 Exit:

10 li $v0 , 10

11 syscall

• Il programma dovrebbe stampare il messaggio:

Hello, World!

nella finestra di dialogo in basso.

6

Hello, World!

1 .data

2 MyMessage: .asciiz "Hello , World!\n"

• .data delimita l’inizio del segmento data, ovvero il contenitore dei

dati statici nel file oggetto.

• .asciiz indica che la stringa tra virgolette è ASCII e terminata da

NULL (byte 0).

• “MyMessage” è una label o etichetta.

7

Hello, World!

1 .text

2 Main:

3 li $v0 , 4

4 la $a0 , MyMessage

5 syscall

6 Exit:

7 li $v0 , 10

8 syscall

• .text delimita l’inizio del segmento text, ovvero il contenitore delle

istruzioni del file oggetto.

• Main è in questo caso il nostro punto di ingresso.

• Carichiamo il servizio “print string” (4) con la load immidiate (li).

• Con la “load address” (la) carichiamo in $a0 l’indirizzo della stringa.

• Syscall 10 per la terminazione del programma.

• “Main” e “Exit” sono label o etichette.

8

Tutorial sulle funzionalità di base

del simulatore MARS - Parte 1

Registri

Registri regdef.h Utilizzo

$0 Permanentemente settato a 0x0.

$at Riservato per l’assemblatore.

$2..3 v0-v1 Usati per la valutazione di espressioni e per contenere il

risultato di funzioni di tipo intero. Anche usato per passare

il link statico quando si chiamano procedure innestate.

$4..7 a0-a3 Usati per passare i primi 4 argomenti attuali (parole di tipo

intero); valori non preservati fra chiamate a procedura.

$8..15 t0-t7 Registri temporanei usati per la valutazione di espressioni;

i loro valori non sono preservati fra chiamate a procedura.

$16..23 s0-s7 Registri salvati: preservare i valori fra chiamate a procedura.

$24..25 t8-t9 Come t0-t7.

$26..27 k0-k1 Riservati per il kernel del sistema operativo.

$28 gp Contiene il puntatore globale (global pointer).

$29 sp Contiene il puntatore allo stack (stack pointer).

$30 fp Contiene il puntatore al frame (frame pointer) se necessario;

altrimenti un registro salvato (come s0-s7).

$31 ra Contiene il return address, per la valutazione di espressioni.

Table 1: In ASM abbiamo accesso diretto ai 32 registri a 32 bit del MIPS.

9

Direttive all’Assemblatore

Direttiva Descrizione

.text Inizio del blocco di istruzioni.

.globl x Indica che la label x è accessibile da un altro file.

.data Inizio del blocco dei dati statici.

.eqv $nome, $reg Permette di usare $nome per riferirci a $reg.

.macro e end_macro Definisce una macro.

Table 2: Le direttive all’Assemblatore forniscono informazioni utili

all’Assembler per gestire l’organizzazione del codice.

Figure 1: Array Lineare di Memoria: è diviso in segmenti (TEXT, DATA, ma

anche STACK, HEAP, . . .).

10

Direttive Principali

1 .data

2 # allocare qui le variabili in memoria dati

3

4 .text

5 # scrivere qui il codice della memoria istruzioni

11

Equivalenze

• Migliorano la leggibilità del codice

• L’utilizzo è a totale discrezione del programmatore

1 .text

2 addi $t0 , $t0 , 1

3 addi $t1 , $t1 , 2

4 add $t2 , $t0 , $t1

Listing 1: Esempio di codice senza l’utilizzo di equivalenze.

1 .eqv op1 , $t0
2 .eqv op2 , $t1
3 .eqv risultato , $t2
4

5 .text

6 addi op1 , op1 , 1

7 addi op2 , op2 , 2

8 add risultato , op1 , op2

Listing 2: Esempio di codice con l’utilizzo di equivalenze.

12

Allocazione Statica di Memoria

Direttiva Descrizione

.byte b1, . . . , bn Alloca n quantità a 8 bit in byte successivi in memoria.

.half h1, . . . , hn Alloca n quantità a 16 bit in halfword successive in memoria.

.word w1, . . . ,wn Alloca n quantità a 32 bit in word successive in memoria.

.float f1, . . . , fn Alloca n valori floating point a singola precisione in locazioni

successive in memoria.

.double d1, . . . , dn Alloca n valori floating point a doppia precisione in locazioni

successive in memoria.

.asciiz str Alloca la stringa str in memoria, terminata con il valore 0.

.space n Alloca n byte, senza inizializzazione.

Table 3: Direttive di allocazione di memoria. All’interno del segmento .data

possiamo definire dati statici in questi modi.

13

Esempi

1 .word 1, 6, 0, 8, 2, 3, 8

1 .half 1, 6, 0, 8, 2, 3, 8

1 .byte 1, 6, 0, 8, 2, 3, 8

14

Esempi

1 .asciiz "ABC"

E’ equivalente a:

1 .byte 65, 66, 67, 0

15

Esempi

1 .word 1, 6, 0, 8, 2, 3, 8

• Si tratta della allocazione statica di un array di interi.

• Come accedere agli elementi dell’array?

• Ricordandosi l’esatto indirizzo di memoria di ogni elemento?

(Spoiler: ovviamente no.)

16

Esempi

• Soluzione: uso un identificatore!

1 array: .word 1, 6, 0, 8, 2, 3, 8

17

Identificatori

• Un identificatore è un nome associato ad una particolare posizione

del programma ASM, come l’indirizzo di un’istruzione o di un dato.

• E.g., “main”, oppure “forloop”, oppure “exitcode, . . .

• E.g., “A” associato ad una variable di x byte

• Ogni istruzione o dato si trova in un particolare indirizzo di

memoria. Un identificatore ci permette di fare riferimento ad una

particolare posizione senza sapere il suo indirizzo in memoria.

18

Etichette o Label

• Un’etichetta introduce un identificatore e lo associa al punto del

programma in cui si trova.

• Un’etichetta consiste in un identificatore seguito dal simbolo “:”.

• E.g., “main:”, “forloop:”, “exitcode:”, . . .

• E.g., “A: word 15” indica l’etichetta di una variabile di 4 byte

inizializzata al valore 15.

• L’identificatore introdotto può avere visibilità locale o globale. Le

etichette sono locali per default.

• L’uso della direttiva “.globl” rende l’etichetta globale.

• Un’etichetta locale può essere referenziata solo dall’interno del file in

cui è definita. Un’etichetta globale può essere referenziata anche da

file diversi.

19

Riferimenti

• Un identificatore può essere usato in un programma Assembler per

fare riferimento alla posizione in memoria associata all’identificatore

stesso.

1 Forloop:

2 ...(istruzioni)...

3 ...(istruzioni)...

4 jump Forloop

• E’ sufficiente una sola etichetta anche per dati che occupano più

byte; ogni byte può essere referenziato tramite uno scostamento

(calcolato in byte) all’indirizzo base.

1 Array: .word 10, 2, 33, 42, 51 # Istanzia un array di 5

interi inizializzati

Listing 3: Il secondo elemento dell’array si può referenziare con “Array+4”.

20

Esercitiamoci con MARS

1 .data

2 a: .word 8

3 b: .word 9

4 c: .word 10, 11, 12, 13

• Dopo il comando “Assemble”:

Figure 2: Layout di memoria.

• Endianess nascosta dal debugger

• Memorizzazione di un intero ogni 4 byte, in ordine di dichiarazione

21

Esercitiamoci con MARS

1 .data

2 a: .half 8

3 b: .half 9

4 c: .half 10, 11, 12, 13

• Dopo il comando “Assemble”:

• Memoria progressivamente riempita ad indirizzi crescenti

• Il debugger visualizza i valori memorizzati usando l’ipotesi di little

endianess: scrivere “.half 8” significa posizionare “0x08” nel byte di

indirizzo più basso

• Le successive half-word sono memorizzate di seguito ognuna in 16 bit

22

Esercitiamoci con MARS

1 .data

2 a: .byte 8

3 b: .byte 9

4 c: .byte 10, 11, 12, 13

• Dopo il comando “Assemble”:

• L’ordine di dichiarazione determina la posizione in memoria,

dall’indirizzo più basso a quello più alto

• Il debugger visualizza i valori memorizzati usando l’ipotesi di little

endianess: nella prima parola, ad indirizzi crescenti, troviamo quindi

“0x08”, “0x09”, “0x0a”, “0x0b”, che il debugger interpreta come

“0x0b0a0908“

23

Esercitiamoci con MARS

1 .data

2 a: .byte 8

3 Stringa: .asciiz "AB"

4 b: .byte 9

5 c: .byte 10, 11, 12, 13

• Dopo il comando “Assemble”:

• L’ordine di dichiarazione determina la posizione in memoria,

dall’indirizzo più basso a quello più alto

• Il debugger visualizza i valori memorizzati usando l’ipotesi di little

endianess, ed i caratteri vengono memorizzati secondo la codifica

ASCII: nella prima parola, ad indirizzi crescenti, troviamo “0x08”,

“0x41” (“A”), “0x42” (“B”), “0x00” (terminatore), che il debugger

interpreta come “0x00424108”
24

Esercitiamoci con MARS

1 .data

2 a: .byte 8

3 Stringa: .ascii "AB"

4 b: .byte 9

5 c: .byte 10, 11, 12, 13

• Dopo il comando “Assemble”:

• Con “.asciiz”: nella prima parola, ad indirizzi crescenti, troviamo

“0x08”, “0x41”, “0x42”, “0x00”, che il debugger interpreta come

“0x00424109”

• Con “.ascii”: scompaiono i due “00“ dalla posizione più significativa,

ed abbiamo subito “0x09”

25

	Introduzione al Simulatore del Set di Istruzioni MIPS ``MARS''
	Tutorial sulle funzionalità di base del simulatore MARS - Parte 1

