Tutorato Architettura degli Elaboratori 03

Alberto Paparellal
3 Aprile 2025

! Dipartimento di Matematica e Informatica, Universitd degli studi di Ferrara



Introduzione al Simulatore del
Set di Istruzioni MIPS “MARS”



Ambiente Integrato di Sviluppo (IDE)

e Per sviluppare un codice MIPS assembly, il progettista pud avvalersi
di un ambiente integrato di sviluppo che lo aiuti a scrivere, testare,
compilare ed eseguire il codice.

e |'ambiente di sviluppo che useremo nelle prossime esercitazioni &

MARS, sviluppato alla Missouri State University per scopi didattici.
o Website: https://dpetersanderson.github.io/



https://dpetersanderson.github.io/

Il Simulatore MARS

e Mips Assembler and Runtime Simulator.

e E' un simulatore del set di istruzioni MIPS sviluppato in ambito

accademico.

e Serve per sviluppare, simulare e fare il debugging di codice
Assembler del MIPS.

e Ultima versione scaricabile da:
https://dpetersanderson.github.io/Mars4_5. jar.

e Importante: richiede la Java Virtual Machine!


https://dpetersanderson.github.io/Mars4_5.jar

Il Simulatore MARS

e Se stai usando Windows, installa la Java Virtual Machine se non
I'hai ancora fatto (http://www.oracle.com/technetwork/java/
javase/downloads/index.html), dopodiche fai doppio clic
sull’eseguibile Jar Mars4_5 per aprirlo.

e Se stai usando Linux, installa Java SDK usando il tuo gestore dei
pacchetti (aptitude per Debian/Ubuntu, pacman per Arch, . ..);
per esempio, su Debian/Ubuntu puoi lanciare il comando:

sudo apt install default-jre
Poi lancia Mars con il comando:

java -jar Mars4_5.jar


http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Il Simulatore MARS

it Run Settings Tools Help € Menu Bar

R BARE) B 082 | & )

Run speed at max (no intera

n)
{) <« Toolbar

[ Edit | Execute | {| Registers | Coproc1 | Coproc 0
[ sums.s Name | Number Value
s 5
2 p
:
S gobl  man |
¢ ata
3
o . . 4
10 prompt: . .. .
12 resubi Plasse enter a Scrivete qui il vostro codice Assembler
13 um ot &
13 resuiz .
e e - intager - Controlla qui il valore
]E newine: - st R . R
= s dei registri, che
19 te) $s1
. 2 cambia mentre si
2 $s4 .
gﬁ ::Zs esegue il programma
4 6
25, =~ §:7 23] 0x00000000)
d b lste 24) 0x00000000)
Line: 14 Column: 9[v] Show Line Numbers ‘3(5 25| 0x00000000]
— sk 26, 0x00000000)
Mars Messages [ run o s zl 000000000
$s 29 Ox7fffeffc|
sfp 30, 0x00000000)
o o ) . () 31| 0:00000000)
dlear Messaggi di MARS (compilazione, runtime, printf) e O
lo 0400000000]




Il Simulatore MARS

e Per compilare, clicca su Run e poi Assemble:

File Edit | Run| Settings Tools Help

‘7‘ dé{m F2

1% D0 &

Assemble the current file and clear breakpoints |

—
[ mins1.a{

1
2
3
4
5
[3

e Per eseguire, clicca su uno dei due tasti:

| Esecuzione completa | | Esecuzione passo-per-passo

; = N Run speed at max (no interaction)
%| 50|82 | ¥ S Q0 —0




Hello, World!

e Scriviamo il nostro primo programma in Assembler:

.data
MyMessage: .asciiz "Hello, World!\n"
.text
Main:
1i $vo, 4
la $a0, MyMessage
syscall
Exit:

1i  $v0, 10
syscall

e |l programma dovrebbe stampare il messaggio:
Hello, World!
nella finestra di dialogo in basso.



Hello, World!

1 .data

2 MyMessage: .asciiz "Hello, World!\n"

e .data delimita I'inizio del segmento data, ovvero il contenitore dei
dati statici nel file oggetto.

e .asciiz indica che la stringa tra virgolette € ASCII e terminata da
NULL (byte 0).

e “MyMessage” & una label o etichetta.



Hello, World!

1 .text

2 Main:

3 1i  $vo, 4

4 la $a0, MyMessage
5 syscall

6 Exit:

7 1i  $v0, 10

8 syscall

e .text delimita I'inizio del segmento text, ovvero il contenitore delle
istruzioni del file oggetto.

e Main € in questo caso il nostro punto di ingresso.

e Carichiamo il servizio “print string” (4) con la load immidiate ().

e Con la "load address” (la) carichiamo in $20 I'indirizzo della stringa.
e Syscall 10 per la terminazione del programma.

e “Main” e "“Exit” sono label o etichette.



Tutorial sulle funzionalita di base
del simulatore MARS - Parte 1



Registri

Registri | regdef.h | Utilizzo
$0 Permanentemente settato a 0x0.
$at Riservato per I'assemblatore.
$2..3 vO-v1 Usati per la valutazione di espressioni e per contenere il
risultato di funzioni di tipo intero. Anche usato per passare
il link statico quando si chiamano procedure innestate.
$4.7 a0-a3 Usati per passare i primi 4 argomenti attuali (parole di tipo
intero); valori non preservati fra chiamate a procedura.
$8..15 t0-t7 Registri temporanei usati per la valutazione di espressioni;
i loro valori non sono preservati fra chiamate a procedura.
$16..23 s0-s7 Registri salvati: preservare i valori fra chiamate a procedura.
$24..25 t8-t9 Come t0-t7.
$26..27 kO-k1 Riservati per il kernel del sistema operativo.
$28 gp Contiene il puntatore globale (global pointer).
$29 sp Contiene il puntatore allo stack (stack pointer).
$30 fp Contiene il puntatore al frame (frame pointer) se necessario;
altrimenti un registro salvato (come s0-s7).
$31 ra Contiene il return address, per la valutazione di espressioni.

Table 1: In ASM abbiamo accesso diretto ai 32 registri a 32 bit del MIPS.




Direttive all’Assemblatore

Direttiva Descrizione

.text Inizio del blocco di istruzioni.

.globl x Indica che la label x & accessibile da un altro file.
.data Inizio del blocco dei dati statici.

.eqv $nome, $reg Permette di usare $nome per riferirci a $reg.
.macro e end_macro | Definisce una macro.

Table 2: Le direttive all’Assemblatore forniscono informazioni utili
all’Assembler per gestire |'organizzazione del codice.

Segmento di istruzioni («TEXT») Segmento di dati statici («<DATA»)

Figure 1: Array Lineare di Memoria: & diviso in segmenti (TEXT, DATA, ma
anche STACK, HEAP, ...).

10



Direttive Principali

1 .data

2 # allocare qui le variabili in memoria dati

3

4 .text

5 # scrivere qui il codice della memoria istruzioni

o I
64
60

Indirizzo
11



Equivalenze

e Migliorano la leggibilita del codice
e |'utilizzo € a totale discrezione del programmatore

.text
addi $t0, $to, 1
addi $t1, $t1, 2
add $t2, $to, $t1

Listing 1: Esempio di codice senza |'utilizzo di equivalenze.

.eqv opl, $t0
.eqv op2, $ti1
.eqv risultato, $t2

.text

addi opl, opl, 1
addi op2, op2, 2
add risultato, opl, op2

Listing 2: Esempio di codice con I'utilizzo di equivalenze.

12



Allocazione Statica di Memoria

Direttiva Descrizione

.byte bi,..., by Alloca n quantita a 8 bit in byte successivi in memoria.
.half hy, ..., h, Alloca n quantita a 16 bit in halfword successive in memoria.
.word wi, ..., Wy Alloca n quantita a 32 bit in word successive in memoria.
.float f1,..., 1 Alloca n valori floating point a singola precisione in locazioni

successive in memoria.

.double di,...,d, | Alloca n valori floating point a doppia precisione in locazioni
successive in memoria.

.asciiz str Alloca la stringa str in memoria, terminata con il valore 0.

.space n Alloca n byte, senza inizializzazione.

Table 3: Direttive di allocazione di memoria. All'interno del segmento .data

possiamo definire dati statici in questi modi.

13



1 .word i, 6, 0, 8, 2, 3, 8

Scrive 32 bit alla volta ‘1 6 l 0 | 8 [ 2 | 3 | 8 |

Tmmo
1 word (4 bytes) e,
28 bytes

1 .half i, 6, 0, 8, 2, 3, 8

Indirizzo
1 word successivo

<«———— 14 bytes ——> inserimento

Scrive 16 bit alla volta h_HS 0 8|2‘3|8’

1 .byte i, 6, 0, 8, 2, 3, 8

Scrive 8 bit alla volta 1‘6‘0‘8|23|8| ‘ | ‘ \ ‘ | ‘ | ‘ |

e
1 rd Indirizzo
wo successivo

¢— 7 bytes -» nserimento

14



1 .asciiz "ABC"

65| 66| 67| 0

T Indirizzo
1 byte SUCCessivo
inserimento

E’ equivalente a:

1 .byte 65, 66, 67, O

15



1 .word i, 6, 0, 8, 2, 3, 8

1 word (4 bytes)

- *

1 6 0 8 2 3 8

T Indirizzo
SUCCESSIVO
inserimento

e Si tratta della allocazione statica di un array di interi.
e Come accedere agli elementi dell’array?

e Ricordandosi |'esatto indirizzo di memoria di ogni elemento?
(Spoiler: ovviamente no.)

16



e Soluzione: uso un identificatore!

1 array: .word

4 *

1, 6,

1 word (4 bytes)

o, 8, 2, 3, 8

1 6

0

T

Indirizzo
SUCCESSIVO
inserimento

array - rappresenta lindirizzo del primo elemento

17



Identificatori

e Un identificatore & un nome associato ad una particolare posizione
del programma ASM, come l'indirizzo di un'istruzione o di un dato.

e E.g., "main”, oppure “forloop”, oppure “exitcode, ...
e E.g., “A" associato ad una variable di x byte
e Ogni istruzione o dato si trova in un particolare indirizzo di
memoria. Un identificatore ci permette di fare riferimento ad una
particolare posizione senza sapere il suo indirizzo in memoria.

18



Etichette o Label

e Un'etichetta introduce un identificatore e lo associa al punto del
programma in cui si trova.

e Un'etichetta consiste in un identificatore seguito dal simbolo
e E.g., "main:", “forloop:”, “exitcode:", ...
e E.g, "A: word 15" indica I'etichetta di una variabile di 4 byte
inizializzata al valore 15.
e L'identificatore introdotto puo avere visibilita locale o globale. Le
etichette sono locali per default.

e |'uso della direttiva “.globl” rende I'etichetta globale.

e Un'etichetta locale pu0 essere referenziata solo dall’interno del file in
cui & definita. Un'etichetta globale puo essere referenziata anche da
file diversi.

19



Riferimenti

1

e Un identificatore puo essere usato in un programma Assembler per
fare riferimento alla posizione in memoria associata all'identificatore
stesso.

Forloop:
...(istruzioni) ...
...(istruzioni) ...
jump Forloop

e E' sufficiente una sola etichetta anche per dati che occupano piu
byte; ogni byte puo essere referenziato tramite uno scostamento
(calcolato in byte) all'indirizzo base.

Array: .word 10, 2, 33, 42, 51 # Istanzia un array di 5

interi inizializzati

Listing 3: Il secondo elemento dell’array si pud referenziare con “Array+4".

20



Esercitiamoci con MARS

1 .data

2 a: .word 8

3 b: .word 9

4 @3 .word 10, 11, 12, 13

e Dopo il comando “Assemble”:

5] pata segment
Address Value (+0) Value (+4) ‘ Value (+8) Value (+c) Value (+10) Value (+14)
0x10010000 |

Figure 2: Layout di memoria.

e Endianess nascosta dal debugger

e Memorizzazione di un intero ogni 4 byte, in ordine di dichiarazione

21



Esercitiamoci con MARS

a: .half 8
b: .half 9
c: .half 10, 11, 12, 13

e Dopo il comando “Assemble”:

[ pata

\ Address [ Value (+0)

Value (+4) \ Value (+8) [ Value (+c) \

0x10010000 0x00030008| 0x000b000a) 0x000d000¢| 0x00000000]

e Memoria progressivamente riempita ad indirizzi crescenti

e |l debugger visualizza i valori memorizzati usando I'ipotesi di little
endianess: scrivere “.half 8" significa posizionare “0x08" nel byte di
indirizzo piu basso

e Le successive half-word sono memorizzate di seguito ognuna in 16 bit

22



Esercitiamoci con MARS

2 a: .byte 8
3 b: .byte 9
4 @8 .byte 10, 11, 12, 13

e Dopo il comando “Assemble”:

E Data Segment
Address value (+0) Value (+4) Walue (+8)

Ox10010000 Ox0b0a0s08 0x00000d0c| Ox00000000

e |'ordine di dichiarazione determina la posizione in memoria,
dall'indirizzo piu basso a quello piu alto

e || debugger visualizza i valori memorizzati usando I'ipotesi di little
endianess: nella prima parola, ad indirizzi crescenti, troviamo quindi
“0x08", “0x09", “0x0a", “0x0b", che il debugger interpreta come
"0x0b0a0908 *

23



Esercitiamoci con MARS

2 a: .byte 8

3 Stringa: .asciiz "AB"

4 b: .byte 9

5 @3 .byte 10, 11, 12, 13

e Dopo il comando “Assemble”:

H pata

Address | Value (+0) \ Value (+4) \ Value (+8) | Value (+c) |

0x10010000 0x00424108| 0x0c0b0a0S| 0x0000000d] 0x00000000|

e |'ordine di dichiarazione determina la posizione in memoria,
dall'indirizzo piu basso a quello piu alto

e || debugger visualizza i valori memorizzati usando I'ipotesi di little
endianess, ed i caratteri vengono memorizzati secondo la codifica
ASCII: nella prima parola, ad indirizzi crescenti, troviamo “0x08",
“0x41" (“A"), “0x42" (“B"), “0x00" (terminatore), che il debugger

interpreta come “0x00424108"
24



Esercitiamoci con MARS

2 a: .byte 8

3 Stringa: .ascii "AB"

4 b: .byte 9

5 @8 .byte 10, 11, 12, 13

e Dopo il comando “Assemble”:

E Data Segment

Address Walue (+0) Value (+4) Value (+8)
0x10010000 0x09424108 0x0d0c0bla) 0x00000000

e Con ".asciiz”: nella prima parola, ad indirizzi crescenti, troviamo
“0x08", “Ox41", “0x42", "0x00", che il debugger interpreta come
"0x00424109"

e Con “.ascii”": scompaiono i due “00" dalla posizione piu significativa,
ed abbiamo subito “0x09"

25



	Introduzione al Simulatore del Set di Istruzioni MIPS ``MARS''
	Tutorial sulle funzionalità di base del simulatore MARS - Parte 1

