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Introduction



Modal logics in the real world

Modal logics offer a valid treatment for temporal and spatial data,

critical in modeling many real-world scenarios:
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Modal logics offer a valid treatment for temporal and spatial data,

critical in modeling many real-world scenarios:

x y z

p, q,¬r p,¬q,¬r ¬p, q,¬r

D

Figure 1: An example of a point-based temporal model with three points:

⟨F ⟩q holds at point x , [P]p holds at point z , ⟨F ⟩⟨P⟩q holds at point y .
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Modal logics in the real world

Modal logics offer a valid treatment for temporal and spatial data,

critical in modeling many real-world scenarios:
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Figure 2: An example of a point-based spatial model with nine points. In

this model, ⟨U⟩⟨R⟩q is satisfied at P1, and [D][L]¬r at P2.
1



Modal logics in the real world

Modal logics offer a valid treatment for temporal and spatial data,

critical in modeling many real-world scenarios:

x y z t u

p, q,¬r

p,¬q,¬r

¬p, q,¬r

D

Figure 3: An interval model with five points and ten intervals. The intervals

with a non-null valuation function are I1 = [x , z], I2 = [y , t], and I3 = [t, u]. In

this model, ⟨O⟩q is true at I1 and [L]¬r is true at I3.
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Modal logics in the real world

Modal logics offer a valid treatment for temporal and spatial data,

critical in modeling many real-world scenarios:
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Figure 4: An example of a topological model. Three rectangles have non-null

valuation function in it, namely R1 = ([x1, z1], [x2, z2]), R2 = ([y1, u1], [y2, u2]),

and R3 = ([t1, u1], [y2, t2]). ⟨TPP⟩q is true at R2 and ¬[PO]q is true at R1.
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Challenges

Sensing and discretizing signals introduce inaccuracies in the data.

A common approach to deal with uncertainty and unclear boundaries

in the data is through fuzzy logics:

•  Lukasiewicz logic

• Gödel logic

• Product logic

On the other hand, Melvin Fitting proposed in 1 a many-valued approach

leveraging Heyting algebras to tackle many-expert scenarios.

We are interested in a framework able to generalize both problems.

1M. Fitting. “Many-valued modal logics”. In: Fundamenta Informaticae 15.3-4

(1991), pp. 235–254
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Solution: FLew-algebras

FLew-algebras encompass several known algebras:

BA

G Π MV

H BL

MTL

FLew

Figure 5: A partial taxonomy of well-known many-valued algebras, namely:

Boolean algebra (BA), Gödel algebras (G), Product algebras (Π), MV-algebras

(MV), Heyting algebras (H), Basic Fuzzy Logic algebras (BL), Monoidal

t-norm logic algebras (MTL), and FLew-algebras (FLew).
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FLew-algebras

Definition

FLew-algebras2

A = ⟨A,∩,∪, ·, 0, 1⟩

are defined over bounded commutative residuated lattices, where:

• ⟨A,∩,∪, 0, 1⟩ represents a bounded complete lattice

• ⟨A, ·, 1⟩ is a commutative monoid

• We can define an implication ↪→ (the residuation property holds)

α ↪→ β = sup{γ | α · γ ⪯ β}

A is a chain if ⟨A,⪯⟩ is a total order, finite if A is finite.

2Hiroakira Ono and Yuichi Komori. “Logics without the contraction rule”. In: The

Journal of Symbolic Logic 50.1 (1985), pp. 169–201
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Many-valued multi-modal logics



Multi-modal logics

Definition

Let AP be a set of propositional letters, ¬ and ∨ the classical Boolean

connectives, and {⟨X1⟩, . . . , ⟨Xn⟩} a finite set of existential modalities.

Well-formed Multi-Modal Logic Kn
3 formulas are obtained as follows:

φ ::= p | ¬φ | φ ∨ ψ | ⟨Xi ⟩φ,

for 1 ≤ i ≤ n and p ∈ AP.

∧, →, and [Xi ] are derivable in the usual way (e.g., [Xi ]φ ≡ ¬⟨Xi ⟩¬φ).

3P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 2001
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Example: Halpern and Shoham’s Modal Logic of Time Intervals

Let D = ⟨D, <⟩ be a linear order with domain D.

An interval over D is an ordered pair [x , y ], where x , y ∈ D and x < y .

There are 12 different binary ordering relations between two intervals:

relation definition example

x y

w z

w z

w z

w z

w z

w z

after RA([x , y ], [w , z]) = = (y ,w)

later RL([x , y ], [w , z]) = < (y ,w)

begins RB([x , y ], [w , z]) = = (x ,w)∧ < (z, y)

ends RE ([x , y ], [w , z]) = < (x ,w)∧ = (y , z)

during RD([x , y ], [w , z]) = < (x ,w)∧ < (z, y)

overlaps RO([x , y ], [w , z]) = < (x ,w)∧ < (w , y)∧ < (y , z)

and their inverse RX = R−1
X for each X ∈ {A, L,B,E ,D,O}.

To each relation RX∈{A,A,L,L,B,B,E ,E ,D,D,O,O} corresponds a modality ⟨X ⟩.
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Multi-modal logics

Definition

Given a non-empty set of worlds W , a Kripke frame is an object

F = ⟨W ,R1 . . .Rn⟩ where each Ri ⊆ W ×W is an accessibility relation.

[1, 2]

[2, 3]

[2, 4]

[2, 5]

[3, 4] [4, 5]

[3, 5]

Figure 6: A Kripke frame for the relation RA (after) of Halpern and Shoham’s

Modal Logic of Time Intervals; each world wi represents an interval [xi , yi ].
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Multi-modal logics

Definition

A Kripke structure (or model) is a Kripke frame enriched with a

valuation function V : W → 2AP , and it is denoted by M = ⟨F ,V ⟩.

[1, 2]

r

[2, 3]

q

[2, 4]

q

[2, 5]

q

[3, 4]

p, q

[4, 5]

p, r

[3, 5]

p, r

Figure 7: A Kripke structure for the Kripke frame in Fig. 6 and the set of

propositional letters AP = {p, q, r}; for each world, we represent only the

propositional letters which are true in that world. 8



Multi-modal logics

Definition

Given a well-formed formula φ, we say that φ is satisfied in M at w , for

some world w , and we denote it by M,w ⊩ φ, if and only if

M,w ⊩ p iff w ∈ V (p), for each p ∈ AP,

M,w ⊩ ¬ψ iff M,w ̸⊩ ψ,

M,w ⊩ ψ ∨ ξ iff M,w ⊩ ψ or M,w ⊩ ξ

M,w ⊩ ⟨Xi ⟩ψ iff there is s s.t. wRi s and M, s ⊩ ψ.

Definition

A formula φ is satisfiable iff there exists a structure and a world in which

it is satisfied, and valid if it is satisfied at every world in every structure.
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Many-valued multi-modal logics

Definition

Let AP be a set of propositional letters and A a complete

FLew-algebra. The well-formed formulas of the Multi-Modal Logic

FLew-Kn are obtained by the following grammar:

φ ::= α | p | φ ∨ ψ | φ ∧ ψ | φ→ ψ | ⟨Xi ⟩φ | [Xi ]φ,

for 1 ≤ i ≤ n, p ∈ AP, and α ∈ A.

In FLew-algebras, negation is typical defined as ¬φ ≡ φ→ 0.

However, the double negation axiom (¬¬φ ≡ φ) is not always vaild.

Hence, FLew-Kn requires an explicit inclusion of all Boolean operators, as

well as the universal version of every modality.
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Many-valued multi-modal logics

Definition

Given a non-empty set of worlds W and a complete FLew-algebra A,

an FLew-Kripke frame is an object F̃ = ⟨W , R̃1 . . . , R̃n⟩, where each

R̃i : (W ×W ) → A is an accessibility function.

Definition

An FLew-Kripke structure (or model) is an FLew-Kripke frame enriched

with a valuation function Ṽ : (W ×AP) → A, and it is denoted by

M̃ = ⟨F̃ , Ṽ ⟩.
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Many-valued multi-modal logics

Definition

Given a well-formed formula φ, we compute its value in M̃ at w , for

some w ∈ W , by extending Ṽ to formulas, as follows:

Ṽ (α,w) = α,

Ṽ (φ ∧ ψ,w) = Ṽ (φ,w) · Ṽ (ψ,w),

Ṽ (φ ∨ ψ,w) = Ṽ (φ,w) ∪ Ṽ (ψ,w),

Ṽ (φ→ ψ,w) = Ṽ (φ,w) ↪→ Ṽ (ψ,w),

Ṽ (⟨Xi ⟩φ,w) =
⋃
{R̃i (w , s) · Ṽ (φ, s)},

Ṽ ([Xi ]φ,w) =
⋂
{R̃i (w , s) ↪→ Ṽ (φ, s)}.
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Many-valued multi-modal logics

Definition

A formula φ of FLew-Kn is α-satisfied at world w in an FLew-Kripke

structure M̃ if and only if

Ṽ (φ,w) ⪰ α.

Definition

A formula φ is α-satisfiable if and only if there exists a structure and a

world in which it is α-satisfied, and it is satisfiable if it is α-satisfiable

for some α ∈ A, α ≻ 0; respectively, a formula is α-valid if it is

α-satisfied at every world in every model, and valid if it is 1-valid.
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Ṽ (φ,w) ⪰ α.

Definition

A formula φ is α-satisfiable if and only if there exists a structure and a

world in which it is α-satisfied, and it is satisfiable if it is α-satisfiable

for some α ∈ A, α ≻ 0; respectively, a formula is α-valid if it is

α-satisfied at every world in every model, and valid if it is 1-valid.

13



Example: Halpern and Shoham’s Modal Logic of Time Intervals

Definition

Let A = ⟨A,∩,∪, ·, 0, 1⟩ a complete FLew-algebra.

An FLew-linear order is a structure of the type

D̃ = ⟨D, <̃, =̃⟩,

where D is a domain enriched with two functions <̃, =̃ : D × D → A,

for which the following conditions apply for every x , y , z ∈ D:

=̃(x , y) = 1 iff x = y ,

=̃(x , y) = =̃(y , x),

<̃(x , x) = 0,

<̃(x , z) ⪰ <̃(x , y) · <̃(y , z),

if <̃(x , y) ≻ 0 and <̃(y , z) ≻ 0, then <̃(x , z) ≻ 0,

if <̃(x , y) = 0 and <̃(y , x) = 0, then =̃(x , y) = 1,

if =̃(x , y) ≻ 0, then <̃(x , y) ≺ 1.
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Example: Halpern and Shoham’s Modal Logic of Time Intervals

Let D̃ = ⟨D, <̃, =̃⟩ be a FLew-linear order with domain D.

An interval over D̃ is an ordered pair [x , y ], where x , y ∈ D and x<̃y .

There are 12 different binary ordering relations between two intervals:

relation definition example

x y

w z

w z

w z

w z

w z

w z

after R̃A([x , y ], [w , z]) = =̃(y ,w)

later R̃L([x , y ], [w , z]) = <̃(y ,w)

begins R̃B([x , y ], [w , z]) = =̃(x ,w) · <̃(z, y)

ends R̃E ([x , y ], [w , z]) = <̃(x ,w) · =̃(y , z)

during R̃D([x , y ], [w , z]) = <̃(x ,w) · <̃(z, y)

overlaps R̃O([x , y ], [w , z]) = <̃(x ,w) · <̃(w , y) · <̃(y , z)

and their inverse RX = R−1
X for each X ∈ {A, L,B,E ,D,O}.

To each relation RX∈{A,A,L,L,B,B,E ,E ,D,D,O,O} corresponds a modality ⟨X ⟩.
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Example: Halpern and Shoham’s Modal Logic of Time Intervals

x y z t1 ≈ t2 u

p = ⊤
q = α

p = β

q = α

p = β

q = ⊤

D

Figure 8: An interval model with six points and thirty intervals, where t1 and t2

are slightly apart. We consider an FLew-algebra with 4 values ⊥ ≺ α ≺ β ≺ ⊤
and ∩ as t-norm, and that RO([y , t1], [t2, u]) = RA([y , t1], [t2, u]) = α. In this

model, ⟨O⟩(p ∧ q) ⪰ α at interval I2.
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Reasoning in many-valued

multi-modal logics



A tableau for many-valued multi-modal logics

During the last couple of years, we’ve been developing tableaux for

α-satisfiability and α-validity in many-valued multi-modal logics4.

ν0 : T (1 ⪯ ⟨A⟩p ∧ [A](p → 0), [x, y ], D̃) D̃ = {<̃(x, y) ≻ 0}

ν1 : T (1 ⪯ ⟨A⟩p), [x, y ], D̃)

ν2 : T (1 ⪯ [A](p → 0), [x, y ], D̃)

ν3 : F (⟨A⟩p ⪯ α, [x, y ], D̃)

ν4 : T (1 ⪯ [A](p ⪯ 0), [x, y ], D̃)

ν5 : F (p ⪯ (1 ↪→ 1), [z, t], D̃′) D̃′ = D̃ ∪ {=̃(x, y) = 0, <̃(z, t) ≻ 0, =̃(y , z) = 1}

ν6 : T ((1 ∩ 1) ⪯ (p → 0), [z, t], D̃′)

ν7 : T (1 ⪯ [A](p → 0), [x, y ], D̃′)

ν8 : T (α ⪯ p, [z, t], D̃′)

ν9 : T (p ⪯ 0, [z, t], D̃′)

ν10 : T (0 ⪯ 0, [z, t], D̃′)

✗

ν11 : T (p ⪯ α, [z, t], D̃′)

ν12 : T (α ⪯ 0, [z, t], D̃′)

✗

ν13 : T (p ⪯ 1, [z, t], D̃′)

ν14 : T (1 ⪯ 0, [z, t], D̃′)

✗

(T∧)

(T∧)

(T ≥)

(T□)

(F♢)

(T□)

(T□)

(F ≤)

(T →)
(T →)

(T →)

(✗5)

(✗5)
(✗1) (✗1)

Figure 9: Fully evaluated Many-Valued Halpern and Shoam’s interval temporal

logic tableau for ⟨A⟩p ∧ [A](p → 0), 1 ∈ G3.

4Guillermo Badia et al. “Fitting’s Style Many-Valued Interval Temporal Logic

Tableau System: Theory and Implementation”. In: 31st International Symposium on

Temporal Representation and Reasoning (TIME 2024). 2024, 7:1–7:16
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SoleReasoners.jl

An open-source implementation can be found in the SoleReasoners.jl

package (https://github.com/aclai-lab/SoleReasoners.jl).

Figure 10: The SoLe ecosystem.

It is also part of the much larger SoLe framework, an open-source project

written in Julia for Symbolic Learning, Reasoning and PostHoc.
18
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The benchmarking problem

There is no available benchmark for many-valued multi-modal logics.

Hence, it is difficult not only to test the implementation performance,

but also to assert its inherent correctedness.

In fact, at the moment, correctedness has been proved only for axioms

(i.e., 1-validities), but that is not enough.

At the same time, attempts searching for modular formula structures of

deterministic satisfiability/validity (as in 56 for the CRISP case) failed.

Solution: having more than one reasoner and comparing the results.

5Peter Balsiger, Alain Heuerding, and Stefan Schwendimann. “A Benchmark

Method for the Propositional Modal Logics K, KT, S4”. In: Journal of Automated

Reasoning 24 (Jan. 2000)
6Emilio Muñoz-Velasco et al. “On coarser interval temporal logics”. In: Artificial

Intelligence 266 (2019), pp. 1–26
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Modal FLew-algebra satisfiability

through first-order translation



Modal FLew-algebra satisfiability through first-order translation

We define a function τ that translates the α-satisfiability problem for a

modal FLew -algebra formula φ to a two-sorted first-order logic:

• one sort for the many-valued linear order

• one sort for the values of the algebra

In the following slides:

• ||φ||w ⪰ α should be read as φ at world w is at least α

• p ∈ AP is a propositional letter

• α, β ∈ A are values from a specified FLew-algebra

• φ,ψ are well-formed FLew-Kn formulas

20
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Modal FLew-algebra satisfiability through first-order translation

For each p ∈ AP, there is a function P(w) that returns a value from the

algebra corresponding to the value of p at the world w ∈ W.

Definition

τ(||p||w ⪰ α) = P(w) ⪰ α

τ(||p||w ⪯ α) = P(w) ⪯ α

τ(||β||w ⪰ α) = β ⪰ α

τ(||β||w ⪯ α) = β ⪯ α

21



Modal FLew-algebra satisfiability through first-order translation

Definition

τ(||φ ∧ ψ||w ⪰ α) = ∃x, y(A(x) ∧ A(y) ∧ τ(||φ||w ⪰ x) ∧ τ(||ψ||w ⪰ y) ∧ (x · y ⪰ α))

τ(||φ ∧ ψ||w ⪯ α) = ∃x, y(A(x) ∧ A(y) ∧ τ(||φ||w ⪯ x) ∧ τ(||ψ||w ⪯ y) ∧ (x · y ⪯ α))

τ(||φ ∨ ψ||w ⪰ α) = ∃x, y(A(x) ∧ A(y) ∧ τ(||φ||w ⪰ x) ∧ τ(||ψ||w ⪰ y) ∧ (x ∨ y ⪰ α))

τ(||φ ∨ ψ||w ⪯ α) = ∃x, y(A(x) ∧ A(y) ∧ τ(||φ||w ⪯ x) ∧ τ(||ψ||w ⪯ y) ∧ (x ∨ y ⪯ α))

τ(||φ → ψ||w ⪰ α) = ∃x, y(A(x) ∧ A(y) ∧ τ(||φ||w ⪯ x) ∧ τ(||ψ||w ⪰ y) ∧ (x ↪→ y ⪰ α))

τ(||φ → ψ||w ⪯ α) = ∃x, y(A(x) ∧ A(y) ∧ τ(||φ||w ⪰ x) ∧ τ(||ψ||w ⪯ y) ∧ (x ↪→ y ⪯ α))

22



Modal FLew-algebra satisfiability through first-order translation

For each accessibility relation Ri in the considered FLew-Kn logic, there

is a function Ri (w , s) that returns a value from the algebra corresponding

to the value of the accessibility relation between worlds w , s ∈ W.

Definition

τ(||⟨Ri ⟩φ||w ⪰ α) = ∃x(A(x) ∧ (x ⪰ α) ∧ ∀y(A(y) → ((y ⪰ x) ↔
∀z, s(A(z) ∧ W(s) ∧ τ(||φ||s ⪰ z) → Ri (w , s) · z ⪯ y))))

τ(||⟨Ri ⟩φ||w ⪯ α) = ∃x(A(x) ∧ (x ⪯ α) ∧ ∀y(A(y) → ((y ⪰ x) ↔
∀z, s(A(z) ∧ W(s) ∧ τ(||φ||s ⪯ z) → Ri (w , s) · z ⪯ y))))

τ(||[Ri ]φ||w ⪰ α) = ∃x(A(x) ∧ (x ⪰ α) ∧ ∀y(A(y) → ((y ⪯ x) ↔
∀z, s(A(z) ∧ W(s) ∧ τ(||φ||s ⪰ z) → Ri (w , s) ↪→ z ⪰ y))))

τ(||[Ri ]φ||w ⪯ α) = ∃x(A(x) ∧ (x ⪯ α) ∧ ∀y(A(y) → ((y ⪯ x) ↔
∀z, s(A(z) ∧ W(s) ∧ τ(||φ||s ⪯ z) → Ri (w , s) ↪→ z ⪰ y))))

23



Implementation



Implementation

The translation has been implemented in the Julia language, and it’s

available open-source: https://github.com/aclai-lab/LATD2025b.

The idea is to translate the α-satisfiability problem for a given FLew-Kn

logics to first order logic and leverage a state of the art sat/smt solver.

At the moment, it only supports:

• finite FLew-algebras

• Halpern and Shoham’s Modal Logic of Time Intervals

• the z3 smt-solver

However, the output of the main process of the translation is an .smt file

compliant to the smt-lib format, a valid input for most smt-solvers.

In the near future, it will also be part of the SoleReasoners.jl package.

24
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Implementation

The implementation works in the following way:

1. Given an FLew-algebra 7, declare a sort A for it, a distinct constant

a1, . . . , an ∈ A for each element in the algebra, and 4 functions join,

meet, monoid and implication explicitly

2. Declare a second sort D for the many-valued linear order and 7

constraints modeling the axioms defined in Def. 14 that each point

x ∈ D must satisfy

3. Recursively construct a string compliant to the smt-lib format

applying the translation rules

4. Call an smt-solver (e.g., z3) on the produced file

7For a list of available FLew-algebras, see the ManyValuedLogics submodule of

SoleLogics.jl, https://github.com/aclai-lab/SoleLogics.jl)
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Tableau vs translation performance
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Figure 11: Tableau vs translation performance for solving α-satisfiability for

many-valued Halpern and Shoam’s interval temporal logic: how many

formulae can be computed within a 60-second timeout over 1400 formulae (200

for each eight from 1 to 7) for algebras BA, G3, MV3, G4, MV4, H4.
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Open-source advocacy

Latest version of SoleReasoners.jl was completed in June 2025.

Testing and benchmarking took all of June and July 2025.

Results: the two reasoning systems disagree on 16 formulas out of 7800.
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Open-source advocacy

Open-source doesn’t only mean available for free.

Open-source means that everybody can contribute!

Please, try our packages, test them, break them, open an issue if you

find any bugs, and feel free to contribute opening a pull request!

That’s what open-source is supposed to mean!
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Conclusions and Future work

Today:

• introduced a framework for many-valued multi-modal logics

• introduced a translation for the α-satisfiability problem for

many-valued multi-modal logics to a two-sorted first-order logic

• introduced an implementation for the translation for many-valued

Halpern and Shoam’s modal logic of time intervals

In the future:

• support for other many-valued multi-modal logics

• support for other sat/smt solvers

• further testing of many-valued multi-modal reasoners
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Thank you for the attention!

Questions?
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