# Modal $\mathrm{FL}_{\mathrm{ew}}$ -algebra satisfiability through first-order translation

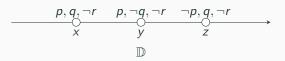
Guillermo Badia<sup>1</sup> Carles Noguera<sup>2</sup> **Alberto Paparella**<sup>3</sup> Guido Sciavicco<sup>3</sup> July 23, 2025

<sup>&</sup>lt;sup>1</sup>School of Historical and Philosophical Inquiry, University of Queensland, Australia

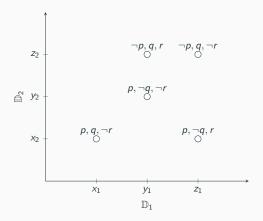
<sup>&</sup>lt;sup>2</sup>Department of Information Engineering and Mathematics, University of Siena, Italy

<sup>&</sup>lt;sup>3</sup>Department of Mathematics and Computer Science, University of Ferrara, Italy

Introduction

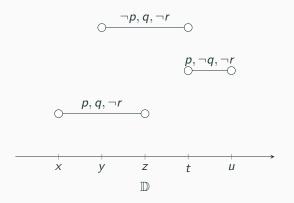


**Figure 1:** An example of a **point-based temporal model** with three points:  $\langle F \rangle q$  holds at point x, [P]p holds at point z,  $\langle F \rangle \langle P \rangle q$  holds at point y.



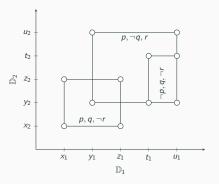
**Figure 2:** An example of a **point-based spatial model** with nine points. In this model,  $\langle U \rangle \langle R \rangle q$  is satisfied at  $P_1$ , and  $[D][L] \neg r$  at  $P_2$ .

Modal logics offer a valid treatment for **temporal** and **spatial** data, critical in modeling many **real-world** scenarios:



**Figure 3:** An **interval model** with five points and ten intervals. The intervals with a non-null valuation function are  $I_1 = [x, z]$ ,  $I_2 = [y, t]$ , and  $I_3 = [t, u]$ . In this model,  $\langle O \rangle q$  is true at  $I_1$  and  $[\overline{L}] \neg r$  is true at  $I_3$ .

1



**Figure 4:** An example of a **topological model**. Three rectangles have non-null valuation function in it, namely  $R_1 = ([x_1, z_1], [x_2, z_2])$ ,  $R_2 = ([y_1, u_1], [y_2, u_2])$ , and  $R_3 = ([t_1, u_1], [y_2, t_2])$ .  $\langle TPP \rangle q$  is true at  $R_2$  and  $\neg [PO]q$  is true at  $R_1$ .

# **Challenges**

Sensing and discretizing signals introduce **inaccuracies** in the data.

A common approach to deal with **uncertainty** and **unclear boundaries** in the data is through **fuzzy logics**:

- Łukasiewicz logic
- Gödel logic
- Product logic

# **Challenges**

Sensing and discretizing signals introduce **inaccuracies** in the data.

A common approach to deal with **uncertainty** and **unclear boundaries** in the data is through **fuzzy logics**:

- Łukasiewicz logic
- Gödel logic
- Product logic

On the other hand, Melvin Fitting proposed in <sup>1</sup> a many-valued approach leveraging **Heyting algebras** to tackle **many-expert** scenarios.

We are interested in a framework able to generalize both problems.

 $<sup>^{1}</sup>$ M. Fitting. "Many-valued modal logics". In: Fundamenta Informaticae 15.3-4 (1991), pp. 235–254

# Solution: $FL_{ew}$ -algebras

 $\mathrm{FL}_{\mathrm{ew}}\text{-}\text{algebras}$  encompass several known algebras:

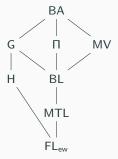


Figure 5: A partial taxonomy of well-known many-valued algebras, namely: Boolean algebra (BA), Gödel algebras (G), Product algebras (\Pi), MV-algebras (MV), Heyting algebras (H), Basic Fuzzy Logic algebras (BL), Monoidal t-norm logic algebras (MTL), and  $\mathrm{FL}_{\mathrm{ew}}$ -algebras (FL $_{\mathrm{ew}}$ ).

# $FL_{\rm ew}\text{-}\text{algebras}$

#### **Definition**

 $\mathrm{FL}_{\mathrm{ew}}\text{-algebras}^2$ 

$$\mathcal{A} = \langle A, \cap, \cup, \cdot, 0, 1 \rangle$$

are defined over bounded commutative residuated lattices, where:

- $\langle A, \cap, \cup, 0, 1 \rangle$  represents a **bounded complete lattice**
- $\langle A, \cdot, 1 \rangle$  is a **commutative monoid**

$$\alpha \hookrightarrow \beta = \sup\{\gamma \mid \alpha \cdot \gamma \leq \beta\}$$

<sup>&</sup>lt;sup>2</sup>Hiroakira Ono and Yuichi Komori. "Logics without the contraction rule". In: *The Journal of Symbolic Logic* 50.1 (1985), pp. 169–201

# $FL_{\rm ew}\text{-}\text{algebras}$

#### **Definition**

 $\mathrm{FL}_{\mathrm{ew}} ext{-algebras}^2$ 

$$\mathcal{A} = \langle A, \cap, \cup, \cdot, 0, 1 \rangle$$

are defined over bounded commutative residuated lattices, where:

- $\langle A, \cap, \cup, 0, 1 \rangle$  represents a **bounded complete lattice**
- $\langle A, \cdot, 1 \rangle$  is a **commutative monoid**

$$\alpha \hookrightarrow \beta = \sup\{\gamma \mid \alpha \cdot \gamma \leq \beta\}$$

 $\mathcal{A}$  is a **chain** if  $\langle A, \preceq \rangle$  is a total order, **finite** if A is finite.

 $<sup>^2</sup>$ Hiroakira Ono and Yuichi Komori. "Logics without the contraction rule". In: *The Journal of Symbolic Logic* 50.1 (1985), pp. 169–201

#### Definition

Let  $\mathcal{A}P$  be a set of propositional letters,  $\neg$  and  $\lor$  the classical Boolean connectives, and  $\{\langle X_1 \rangle, \ldots, \langle X_n \rangle\}$  a finite set of existential modalities. Well-formed *Multi-Modal Logic*  $K_n^3$  formulas are obtained as follows:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle X_i \rangle \varphi,$$

for  $1 \le i \le n$  and  $p \in AP$ .

 $\wedge$ ,  $\rightarrow$ , and  $[X_i]$  are derivable in the usual way (e.g.,  $[X_i]\varphi \equiv \neg \langle X_i \rangle \neg \varphi$ ).

<sup>&</sup>lt;sup>3</sup>P. Blackburn, M. de Rijke, and Y. Venema. **Modal Logic.** Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001

Let  $\mathbb{D} = \langle D, < \rangle$  be a linear order with domain D.

An interval over  $\mathbb D$  is an ordered pair [x,y], where  $x,y \in \mathbb D$  and x < y.

There are 12 different binary ordering relations between two intervals:

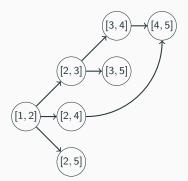
| relation | definition                                                                    | example |
|----------|-------------------------------------------------------------------------------|---------|
|          |                                                                               | x y     |
| after    | $R_A([x,y],[w,z]) = (y,w)$                                                    | w z     |
| later    | $R_L([x,y],[w,z]) = \langle (y,w)$                                            | W Z     |
| begins   | $R_B([x,y],[w,z]) = (x,w) \wedge < (z,y)$                                     | w z     |
| ends     | $R_E([x,y],[w,z]) = \langle (x,w) \wedge = (y,z)$                             | w z     |
| during   | $R_D([x,y],[w,z]) = \langle (x,w) \wedge \langle (z,y) \rangle$               | w z     |
| overlaps | $R_O([x,y],[w,z]) = \langle (x,w) \wedge \langle (w,y) \rangle \langle (y,z)$ | w z     |

and their inverse  $R_{\overline{X}} = R_X^{-1}$  for each  $X \in \{A, L, B, E, D, O\}$ .

To each relation  $R_{X \in \{A,\overline{A},L,\overline{L},B,\overline{B},E,\overline{E},D,\overline{D},O,\overline{O}\}}$  corresponds a modality  $\langle X \rangle$ .

#### **Definition**

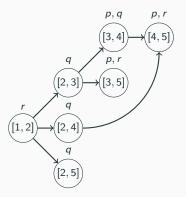
Given a non-empty set of worlds W, a Kripke frame is an object  $F = \langle W, R_1 \dots R_n \rangle$  where each  $R_i \subseteq W \times W$  is an accessibility relation.



**Figure 6:** A Kripke frame for the relation  $R_A$  (*after*) of Halpern and Shoham's Modal Logic of Time Intervals; each world  $w_i$  represents an interval  $[x_i, y_i]$ .

#### **Definition**

A Kripke structure (or model) is a Kripke frame enriched with a valuation function  $V:W\to 2^{\mathcal{AP}}$ , and it is denoted by  $M=\langle F,V\rangle$ .



**Figure 7:** A Kripke structure for the Kripke frame in Fig. 6 and the set of propositional letters  $\mathcal{AP} = \{p, q, r\}$ ; for each world, we represent only the propositional letters which are true in that world.

#### **Definition**

Given a well-formed formula  $\varphi$ , we say that  $\varphi$  is satisfied in M at w, for some world w, and we denote it by  $M, w \Vdash \varphi$ , if and only if

```
M, w \Vdash p iff w \in V(p), for each p \in \mathcal{A}P, M, w \Vdash \neg \psi iff M, w \not\vdash \psi, M, w \Vdash \psi \lor \xi iff M, w \Vdash \psi or M, w \vdash \xi M, w \vdash \langle X_i \rangle \psi iff there is s s.t. wR_is and M, s \vdash \psi.
```

q

#### **Definition**

Given a well-formed formula  $\varphi$ , we say that  $\varphi$  is satisfied in M at w, for some world w, and we denote it by  $M, w \Vdash \varphi$ , if and only if

```
M, w \Vdash p iff w \in V(p), for each p \in \mathcal{AP}, M, w \Vdash \neg \psi iff M, w \not\Vdash \psi, M, w \Vdash \psi \lor \xi iff M, w \Vdash \psi or M, w \Vdash \xi M, w \Vdash \langle X_i \rangle \psi iff there is s s.t. wR_i s and M, s \Vdash \psi.
```

#### **Definition**

A formula  $\varphi$  is satisfiable iff there exists a structure and a world in which it is satisfied, and valid if it is satisfied at every world in every structure.

g

#### Definition

Let  $\mathcal{A}P$  be a set of propositional letters and  $\mathcal{A}$  a complete  $\mathrm{FL}_{\mathrm{ew}}$ -algebra. The well-formed formulas of the *Multi-Modal Logic*  $\mathrm{FL}_{\mathrm{ew}}$ - $\mathcal{K}_n$  are obtained by the following grammar:

$$\varphi ::= \alpha \mid p \mid \varphi \lor \psi \mid \varphi \land \psi \mid \varphi \rightarrow \psi \mid \langle X_i \rangle \varphi \mid [X_i] \varphi,$$

for  $1 \leq i \leq n$ ,  $p \in AP$ , and  $\alpha \in A$ .

In  $\mathrm{FL}_{\mathrm{ew}}$ -algebras, negation is typical defined as  $\neg \varphi \equiv \varphi 
ightarrow 0$ .

However, the double negation axiom  $(\neg \neg \varphi \equiv \varphi)$  is **not** always vaild.

Hence,  ${\rm FL_{ew}}$ - ${\rm K}_n$  requires an explicit inclusion of all Boolean operators, as well as the universal version of every modality.

#### **Definition**

Given a non-empty set of worlds W and a complete  $\mathrm{FL}_{\mathrm{ew}}$ -algebra  $\mathcal{A}$ , an  $\mathrm{FL}_{\mathrm{ew}}$ -Kripke frame is an object  $\widetilde{F} = \langle W, \widetilde{R}_1 \dots, \widetilde{R}_n \rangle$ , where each  $\widetilde{R}_i : (W \times W) \to \mathcal{A}$  is an accessibility function.

#### **Definition**

Given a non-empty set of worlds W and a complete  $\mathrm{FL}_{\mathrm{ew}}$ -algebra  $\mathcal{A}$ , an  $\mathrm{FL}_{\mathrm{ew}}$ -Kripke frame is an object  $\widetilde{F} = \langle W, \widetilde{R}_1 \dots, \widetilde{R}_n \rangle$ , where each  $\widetilde{R}_i : (W \times W) \to \mathcal{A}$  is an accessibility function.

#### **Definition**

An  $\operatorname{FL}_{\operatorname{ew}}$ -Kripke structure (or model) is an  $\operatorname{FL}_{\operatorname{ew}}$ -Kripke frame enriched with a valuation function  $\widetilde{V}:(W\times \mathcal{A}P)\to \mathcal{A}$ , and it is denoted by  $\widetilde{M}=\langle \widetilde{F},\widetilde{V}\rangle.$ 

#### **Definition**

Given a well-formed formula  $\varphi$ , we compute its value in  $\widetilde{M}$  at w, for some  $w \in W$ , by extending  $\widetilde{V}$  to formulas, as follows:

$$\begin{array}{lcl} \widetilde{V}(\alpha,w) & = & \alpha, \\ \widetilde{V}(\varphi \wedge \psi,w) & = & \widetilde{V}(\varphi,w) \cdot \widetilde{V}(\psi,w), \\ \widetilde{V}(\varphi \vee \psi,w) & = & \widetilde{V}(\varphi,w) \cup \widetilde{V}(\psi,w), \\ \widetilde{V}(\varphi \rightarrow \psi,w) & = & \widetilde{V}(\varphi,w) \hookrightarrow \widetilde{V}(\psi,w), \\ \widetilde{V}(\langle X_i \rangle \varphi,w) & = & \bigcup \{\widetilde{R}_i(w,s) \cdot \widetilde{V}(\varphi,s)\}, \\ \widetilde{V}([X_i]\varphi,w) & = & \bigcap \{\widetilde{R}_i(w,s) \hookrightarrow \widetilde{V}(\varphi,s)\}. \end{array}$$

#### **Definition**

A formula  $\varphi$  of  $\mathrm{FL_{ew}}$ -K<sub>n</sub> is  $\alpha$ -satisfied at world w in an  $\mathrm{FL_{ew}}$ -Kripke structure  $\widetilde{M}$  if and only if

$$\widetilde{V}(\varphi, w) \succeq \alpha.$$

#### **Definition**

A formula  $\varphi$  of  $\mathrm{FL_{ew}}$ -K<sub>n</sub> is  $\alpha$ -satisfied at world w in an  $\mathrm{FL_{ew}}$ -Kripke structure  $\widetilde{M}$  if and only if

$$\widetilde{V}(\varphi, w) \succeq \alpha.$$

#### Definition

A formula  $\varphi$  is  $\alpha$ -satisfiable if and only if there exists a structure and a world in which it is  $\alpha$ -satisfied, and it is satisfiable if it is  $\alpha$ -satisfiable for some  $\alpha \in \mathcal{A}$ ,  $\alpha \succ 0$ ; respectively, a formula is  $\alpha$ -valid if it is  $\alpha$ -satisfied at every world in every model, and valid if it is 1-valid.

#### **Definition**

Let  $\mathcal{A}=\langle A,\cap,\cup,\cdot,0,1\rangle$  a complete  $\mathrm{FL}_{\mathrm{ew}}$ -algebra.

An  $\mathrm{FL}_{\mathrm{ew}}$ -linear order is a structure of the type

$$\widetilde{\mathbb{D}} = \langle D, \widetilde{<}, \widetilde{=} \rangle,$$

where D is a *domain* enriched with two functions  $\widetilde{<}, \widetilde{=}: D \times D \to A$ , for which the following conditions apply for every  $x, y, z \in D$ :

$$\begin{split} & \cong(x,y) = 1 \text{ iff } x = y, \\ & \cong(x,y) = \cong(y,x), \\ & \stackrel{<}{\sim}(x,x) = 0, \\ & \stackrel{<}{\sim}(x,z) \succeq \stackrel{<}{\sim}(x,y) \cdot \stackrel{<}{\sim}(y,z), \\ & \text{if } \stackrel{<}{\sim}(x,y) \succ 0 \text{ and } \stackrel{<}{\sim}(y,z) \succ 0, \text{ then } \stackrel{<}{\sim}(x,z) \succ 0, \\ & \text{if } \stackrel{<}{\sim}(x,y) = 0 \text{ and } \stackrel{<}{\sim}(y,x) = 0, \text{ then } \cong(x,y) = 1, \\ & \text{if } \cong(x,y) \succ 0, \text{ then } \stackrel{<}{\sim}(x,y) \prec 1. \end{split}$$

Let  $\widetilde{\mathbb{D}} = \langle D, \widetilde{<}, \widetilde{=} \rangle$  be a  $\mathrm{FL}_{\mathrm{ew}}$ -linear order with domain D.

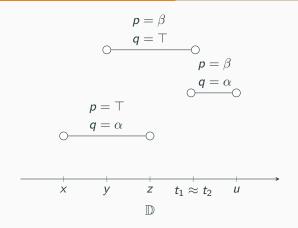
An interval over  $\widetilde{\mathbb{D}}$  is an ordered pair [x,y], where  $x,y\in\mathbb{D}$  and  $x\widetilde{<}y$ .

There are 12 different binary ordering relations between two intervals:

| relation | definition                     |   | finition                                                           | example |
|----------|--------------------------------|---|--------------------------------------------------------------------|---------|
|          |                                |   |                                                                    | x y     |
| after    | $\widetilde{R}_A([x,y],[w,z])$ | = | $\widetilde{=}(y,w)$                                               | w z     |
| later    | $\widetilde{R}_L([x,y],[w,z])$ | = | $\tilde{<}(y,w)$                                                   | W Z     |
| begins   | $\widetilde{R}_B([x,y],[w,z])$ | = | $\widetilde{=}(x,w)\cdot\widetilde{<}(z,y)$                        | w z     |
| ends     | $\widetilde{R}_E([x,y],[w,z])$ | = | $\widetilde{<}(x,w)\cdot\widetilde{=}(y,z)$                        | w z     |
| during   | $\widetilde{R}_D([x,y],[w,z])$ | = | $\widetilde{<}(x,w)\cdot\widetilde{<}(z,y)$                        | w z     |
| overlaps | $\widetilde{R}_O([x,y],[w,z])$ | = | $\widetilde{<}(x,w)\cdot\widetilde{<}(w,y)\cdot\widetilde{<}(y,z)$ | w z     |

and their inverse  $R_{\overline{X}} = R_X^{-1}$  for each  $X \in \{A, L, B, E, D, O\}$ .

To each relation  $R_{X \in \{A,\overline{A},L,\overline{L},B,\overline{B},E,\overline{E},D,\overline{D},O,\overline{O}\}}$  corresponds a modality  $\langle X \rangle$ .

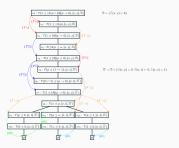


**Figure 8:** An interval model with six points and thirty intervals, where  $t_1$  and  $t_2$  are slightly apart. We consider an  $\mathrm{FL_{ew}}$ -algebra with 4 values  $\bot \prec \alpha \prec \beta \prec \top$  and  $\cap$  as t-norm, and that  $R_O([y,t_1],[t_2,u])=R_A([y,t_1],[t_2,u])=\alpha$ . In this model,  $\langle O \rangle (p \wedge q) \succeq \alpha$  at interval  $I_2$ .

Reasoning in many-valued

#### A tableau for many-valued multi-modal logics

During the last couple of years, we've been developing tableaux for  $\alpha$ -satisfiability and  $\alpha$ -validity in many-valued multi-modal logics<sup>4</sup>.



**Figure 9:** Fully evaluated Many-Valued Halpern and Shoam's interval temporal logic tableau for  $\langle A \rangle p \wedge [A](p \to 0)$ ,  $1 \in \mathsf{G3}$ .

<sup>&</sup>lt;sup>4</sup>Guillermo Badia et al. "Fitting's Style Many-Valued Interval Temporal Logic Tableau System: Theory and Implementation". In: 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). 2024, 7:1–7:16

#### SoleReasoners.jl

An open-source implementation can be found in the SoleReasoners.jl package (https://github.com/aclai-lab/SoleReasoners.jl).

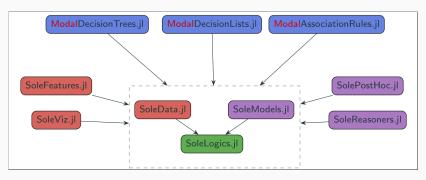


Figure 10: The SoLe ecosystem.

It is also part of the much larger SoLe framework, an open-source project written in Julia for Symbolic Learning, Reasoning and PostHoc.

#### The benchmarking problem

There is no available benchmark for many-valued multi-modal logics.

Hence, it is difficult not only to test the implementation **performance**, but also to assert its inherent **correctedness**.

In fact, at the moment, correctedness has been proved only for axioms (i.e., 1-validities), but that is not enough.

At the same time, attempts searching for modular formula structures of deterministic satisfiability/validity (as in  $^{56}$  for the CRISP case) failed.

<sup>&</sup>lt;sup>5</sup>Peter Balsiger, Alain Heuerding, and Stefan Schwendimann. "A Benchmark Method for the Propositional Modal Logics K, KT, S4". In: *Journal of Automated Reasoning* 24 (Jan. 2000)

 $<sup>^6</sup> Emilio$  Muñoz-Velasco et al. "On coarser interval temporal logics". In: Artificial Intelligence 266 (2019), pp. 1–26

# The benchmarking problem

There is no available benchmark for many-valued multi-modal logics.

Hence, it is difficult not only to test the implementation **performance**, but also to assert its inherent **correctedness**.

In fact, at the moment, correctedness has been proved only for axioms (i.e., 1-validities), but that is not enough.

At the same time, attempts searching for modular formula structures of deterministic satisfiability/validity (as in  $^{56}$  for the CRISP case) failed.

**Solution:** having more than one reasoner and comparing the results.

<sup>&</sup>lt;sup>5</sup>Peter Balsiger, Alain Heuerding, and Stefan Schwendimann. "A Benchmark Method for the Propositional Modal Logics K, KT, S4". In: *Journal of Automated Reasoning* 24 (Jan. 2000)

 $<sup>^6</sup>$  Emilio Muñoz-Velasco et al. "On coarser interval temporal logics". In: Artificial Intelligence 266 (2019), pp. 1–26

Modal  $FL_{ew}$ -algebra satisfiability

through first-order translation

# Modal $\mathrm{FL}_{\mathrm{ew}}$ -algebra satisfiability through first-order translation

We define a function  $\tau$  that translates the  $\alpha$ -satisfiability problem for a modal  $\mathsf{FL}_{ew}$ -algebra formula  $\varphi$  to a **two-sorted first-order logic**:

- one sort for the many-valued linear order
- one sort for the values of the algebra

# Modal $\mathrm{FL}_{\mathrm{ew}}$ -algebra satisfiability through first-order translation

We define a function  $\tau$  that translates the  $\alpha$ -satisfiability problem for a modal  $\mathsf{FL}_{ew}$ -algebra formula  $\varphi$  to a **two-sorted first-order logic**:

- one sort for the many-valued linear order
- one sort for the values of the algebra

#### In the following slides:

- $||\varphi||_w \succeq \alpha$  should be read as  $\varphi$  at world w is at least  $\alpha$
- $p \in \mathcal{AP}$  is a propositional letter
- $\alpha, \beta \in \mathcal{A}$  are values from a specified  $\mathrm{FL}_{\mathrm{ew}}$ -algebra
- $\varphi, \psi$  are well-formed  $\mathrm{FL}_{\mathrm{ew}}$ - $\mathsf{K}_n$  formulas

# Modal $\mathrm{FL}_{\mathrm{ew}}$ -algebra satisfiability through first-order translation

For each  $p \in \mathcal{AP}$ , there is a function  $\mathcal{P}(w)$  that returns a value from the algebra corresponding to the value of p at the world  $w \in \mathcal{W}$ .

#### Definition

$$\tau(||p||_w \succeq \alpha) = \mathcal{P}(w) \succeq \alpha$$

$$\tau(||p||_w \leq \alpha) = \mathcal{P}(w) \leq \alpha$$

$$\tau(||\beta||_w \succeq \alpha) = \beta \succeq \alpha$$

$$\tau(||\beta||_w \leq \alpha) = \beta \leq \alpha$$

# Modal $\mathrm{FL}_{\mathrm{ew}}$ -algebra satisfiability through first-order translation

#### **Definition**

$$\begin{split} \tau(||\varphi \wedge \psi||_{w} \succeq \alpha) &= \exists x, y(\mathcal{A}(x) \wedge \mathcal{A}(y) \wedge \tau(||\varphi||_{w} \succeq x) \wedge \tau(||\psi||_{w} \succeq y) \wedge (x \cdot y \succeq \alpha)) \\ \tau(||\varphi \wedge \psi||_{w} \preceq \alpha) &= \exists x, y(\mathcal{A}(x) \wedge \mathcal{A}(y) \wedge \tau(||\varphi||_{w} \preceq x) \wedge \tau(||\psi||_{w} \preceq y) \wedge (x \cdot y \preceq \alpha)) \\ \tau(||\varphi \vee \psi||_{w} \succeq \alpha) &= \exists x, y(\mathcal{A}(x) \wedge \mathcal{A}(y) \wedge \tau(||\varphi||_{w} \succeq x) \wedge \tau(||\psi||_{w} \succeq y) \wedge (x \vee y \succeq \alpha)) \\ \tau(||\varphi \vee \psi||_{w} \preceq \alpha) &= \exists x, y(\mathcal{A}(x) \wedge \mathcal{A}(y) \wedge \tau(||\varphi||_{w} \preceq x) \wedge \tau(||\psi||_{w} \preceq y) \wedge (x \vee y \preceq \alpha)) \\ \tau(||\varphi \rightarrow \psi||_{w} \succeq \alpha) &= \exists x, y(\mathcal{A}(x) \wedge \mathcal{A}(y) \wedge \tau(||\varphi||_{w} \preceq x) \wedge \tau(||\psi||_{w} \succeq y) \wedge (x \hookrightarrow y \succeq \alpha)) \\ \tau(||\varphi \rightarrow \psi||_{w} \preceq \alpha) &= \exists x, y(\mathcal{A}(x) \wedge \mathcal{A}(y) \wedge \tau(||\varphi||_{w} \succeq x) \wedge \tau(||\psi||_{w} \preceq y) \wedge (x \hookrightarrow y \preceq \alpha)) \end{split}$$

# Modal $\mathrm{FL}_{\mathrm{ew}}$ -algebra satisfiability through first-order translation

For each accessibility relation  $R_i$  in the considered  $\mathrm{FL}_\mathrm{ew}$ - $\mathrm{K}_n$  logic, there is a function  $\mathcal{R}_i(w,s)$  that returns a value from the algebra corresponding to the value of the accessibility relation between worlds  $w,s\in\mathcal{W}$ .

#### **Definition**

$$\begin{split} \tau(||\langle R_i \rangle \varphi ||_w \succeq \alpha) &= \exists x (\mathcal{A}(x) \land (x \succeq \alpha) \land \forall y (\mathcal{A}(y) \to ((y \succeq x) \leftrightarrow \forall z, s(\mathcal{A}(z) \land \mathcal{W}(s) \land \tau(||\varphi||_s \succeq z) \to \mathcal{R}_i(w, s) \cdot z \preceq y)))) \\ \tau(||\langle R_i \rangle \varphi ||_w \preceq \alpha) &= \exists x (\mathcal{A}(x) \land (x \preceq \alpha) \land \forall y (\mathcal{A}(y) \to ((y \succeq x) \leftrightarrow \forall z, s(\mathcal{A}(z) \land \mathcal{W}(s) \land \tau(||\varphi||_s \preceq z) \to \mathcal{R}_i(w, s) \cdot z \preceq y)))) \\ \tau(||[R_i] \varphi ||_w \succeq \alpha) &= \exists x (\mathcal{A}(x) \land (x \succeq \alpha) \land \forall y (\mathcal{A}(y) \to ((y \preceq x) \leftrightarrow \forall z, s(\mathcal{A}(z) \land \mathcal{W}(s) \land \tau(||\varphi||_s \succeq z) \to \mathcal{R}_i(w, s) \hookrightarrow z \succeq y)))) \\ \tau(||[R_i] \varphi ||_w \preceq \alpha) &= \exists x (\mathcal{A}(x) \land (x \preceq \alpha) \land \forall y (\mathcal{A}(y) \to ((y \preceq x) \leftrightarrow \forall z, s(\mathcal{A}(z) \land \mathcal{W}(s) \land \tau(||\varphi||_s \preceq z) \to \mathcal{R}_i(w, s) \hookrightarrow z \succeq y)))) \\ \forall (||[R_i] \varphi ||_w \preceq \alpha) &= \exists x (\mathcal{A}(x) \land (x \preceq \alpha) \land \forall y (\mathcal{A}(y) \to ((y \preceq x) \leftrightarrow \forall z, s(\mathcal{A}(z) \land \mathcal{W}(s) \land \tau(||\varphi||_s \preceq z) \to \mathcal{R}_i(w, s) \hookrightarrow z \succeq y)))) \end{split}$$

The translation has been implemented in the **Julia** language, and it's available open-source: https://github.com/aclai-lab/LATD2025b.

The idea is to translate the  $\alpha$ -satisfiability problem for a given  $\mathrm{FL}_{\mathrm{ew}}$ - $\mathrm{K}_n$  logics to first order logic and leverage a state of the art sat/smt solver.

The translation has been implemented in the **Julia** language, and it's available open-source: https://github.com/aclai-lab/LATD2025b.

The idea is to translate the  $\alpha$ -satisfiability problem for a given  $\mathrm{FL}_{\mathrm{ew}}$ - $\mathrm{K}_n$  logics to first order logic and leverage a state of the art sat/smt solver.

At the moment, it only supports:

- $\bullet$  finite  $FL_{ew}\mbox{-algebras}$
- Halpern and Shoham's Modal Logic of Time Intervals
- the **z3** smt-solver

However, the output of the main process of the translation is an .smt file compliant to the smt-lib format, a valid input for most smt-solvers.

In the near future, it will also be part of the **SoleReasoners.jl** package.

The implementation works in the following way:

1. Given an  $\mathrm{FL}_{\mathrm{ew}}$ -algebra <sup>7</sup>, declare a **sort** A for it, a distinct constant  $a_1, \ldots, a_n \in A$  for each element in the algebra, and 4 functions *join*, *meet*, *monoid* and *implication* explicitly

 $<sup>^7</sup> For a list of available {\rm FL_{ew}}\mbox{-algebras},$  see the  $\mbox{ManyValuedLogics}$  submodule of  $\mbox{SoleLogics.jI}, \mbox{https://github.com/aclai-lab/SoleLogics.jl})$ 

The implementation works in the following way:

- 1. Given an  $\mathrm{FL}_{\mathrm{ew}}$ -algebra <sup>7</sup>, declare a **sort** A for it, a distinct constant  $a_1, \ldots, a_n \in A$  for each element in the algebra, and 4 functions *join*, meet, monoid and implication explicitly
- 2. Declare a second **sort** D for the many-valued linear order and 7 constraints modeling the axioms defined in Def. 14 that each point  $x \in D$  must satisfy

 $<sup>^7</sup> For \ a \ list of available {\rm FL_{ew}}\mbox{-algebras}, see the ManyValuedLogics submodule of SoleLogics.jl, https://github.com/aclai-lab/SoleLogics.jl)$ 

The implementation works in the following way:

- 1. Given an  $\mathrm{FL}_{\mathrm{ew}}$ -algebra <sup>7</sup>, declare a **sort** A for it, a distinct constant  $a_1, \ldots, a_n \in A$  for each element in the algebra, and 4 functions *join*, *meet*, *monoid* and *implication* explicitly
- 2. Declare a second **sort** D for the many-valued linear order and 7 constraints modeling the axioms defined in Def. 14 that each point  $x \in D$  must satisfy
- 3. Recursively construct a string compliant to the **smt-lib** format applying the translation rules

 $<sup>^7</sup> For \ a \ list of available {\rm FL_{ew}}\mbox{-algebras}, see the ManyValuedLogics submodule of SoleLogics.jl, https://github.com/aclai-lab/SoleLogics.jl)$ 

The implementation works in the following way:

- 1. Given an  $\mathrm{FL}_{\mathrm{ew}}$ -algebra <sup>7</sup>, declare a **sort** A for it, a distinct constant  $a_1,\ldots,a_n\in A$  for each element in the algebra, and 4 functions *join*, meet, monoid and implication explicitly
- 2. Declare a second **sort** D for the many-valued linear order and 7 constraints modeling the axioms defined in Def. 14 that each point  $x \in D$  must satisfy
- 3. Recursively construct a string compliant to the **smt-lib** format applying the translation rules
- 4. Call an smt-solver (e.g., z3) on the produced file

 $<sup>^7</sup> For a list of available {\rm FL}_{\rm ew}$ -algebras, see the <code>ManyValuedLogics</code> submodule of <code>SoleLogics.jl</code>, <code>https://github.com/aclai-lab/SoleLogics.jl</code>)

#### Tableau vs translation performance

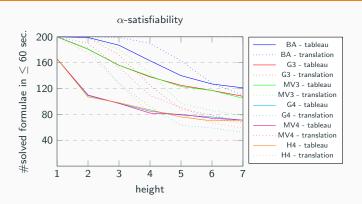


Figure 11: Tableau vs translation performance for solving  $\alpha$ -satisfiability for many-valued Halpern and Shoam's interval temporal logic: how many formulae can be computed within a 60-second timeout over 1400 formulae (200 for each eight from 1 to 7) for algebras BA, G3, MV3, G4, MV4, H4.

Latest version of SoleReasoners.jl was completed in June 2025.

Testing and benchmarking took all of June and July 2025.

Latest version of **SoleReasoners.jl** was completed in June 2025.

Testing and benchmarking took all of June and July 2025.

**Results:** the two reasoning systems disagree on **16 formulas** out of 7800.

Open-source doesn't only mean available for free.

Open-source means that everybody can contribute!

Please, **try** our packages, **test** them, **break** them, open an **issue** if you find any **bugs**, and feel free to **contribute** opening a **pull request**!

**Open-source** doesn't only mean available for free.

Open-source means that everybody can contribute!

Please, **try** our packages, **test** them, **break** them, open an **issue** if you find any **bugs**, and feel free to **contribute** opening a **pull request**!

That's what **open-source** is supposed to mean!

**Conclusions and Future work** 

#### **Conclusions and Future work**

#### Today:

- introduced a framework for many-valued multi-modal logics
- introduced a translation for the α-satisfiability problem for many-valued multi-modal logics to a two-sorted first-order logic
- introduced an implementation for the translation for many-valued Halpern and Shoam's modal logic of time intervals

#### **Conclusions and Future work**

#### Today:

- introduced a framework for many-valued multi-modal logics
- introduced a translation for the α-satisfiability problem for many-valued multi-modal logics to a two-sorted first-order logic
- introduced an implementation for the translation for many-valued
   Halpern and Shoam's modal logic of time intervals

#### In the future:

- support for other many-valued multi-modal logics
- support for other sat/smt solvers
- further testing of many-valued multi-modal reasoners

# Thank you for the attention! Questions?