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Introduction

Vector space embeddings of logic formulas aim to represent symbolic logic as vectors.
This enables, for example, neural networks and machine learning models to perform
reasoning over logic-based representations [4]. Such embeddings can be given [3] or
learned from data [6]. However, there seem to be no literature about embeddings of
modal logics. Therefore, a formal framework for vector space embeddings of modal
formulas would be of great value, providing an essential tool for faster reasoning.

This work describes a novel approach to embed modal logic formulas over a vector
space, with the key idea of interpreting a set of representative modal logic models as
dimensions and hence providing a binary encoding of formulas based on the models
that satisfy them. This shares some ideas with [5], however following different goals.
Furthermore, some examples of both theoretical and applicative interest are described,
solving classical problems in an heuristic way somewhat similar to [1, 2]. Finally, we also
provide an open-source implementation 9.

Method

Let P = {p,q,r,...} be a set of propositional letters, {A, Vv, =} a set of propositional
logic operators, {{J, 0} a set of normal modal logic operators, F = {1, ¢2,...,¢n} a
set of well-formed formulas, and M = {M;, Ms, . .., M,,,} a set of finite Kripke models,
where each model M; € M is defined as:

where W; = {wy, ..., w,} is the set of worlds in M;, R; C W; x W; is an accessibility
relation between worlds, and V; : W; x P — {0, 1} is a valuation function assigning a
truth value to each propositional letter in each world.

A vector space embedding for formulas in F is defined through a satisfaction matrix
S of dimensions n x m, where each element S; ; € {0,1} is given by:
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The matrix S summarizes the satisfaction of every formula in F in every Kripke struc-
ture in M. Note that S C S, where S is the complete matrix of every possible formula
evaluated on every possible Kripke model. Such an embedding can be interpreted as
a vector space comprised by Kripke models (the columns of S) as axis where formulas
(the rows of S) are represented by binary vectors, i.e., each coordinate is either O or 1.

Figure 1. Abstract representation of a high-dimensional vector space; formulas in the
gray region are considered similar to /.

Given a vector space embedding as described in eq. 1, one can be interested in a
notion of “similarity” between formulas: we propose to consider a notion of similarity
based on the number of models the formulas share. A figurative example is repre-
sented in 1. Such a notion can be grasped by common similarity metrics between
vectors, e.g., the rather popular cosine similarity and its variances. In particular, we
employ a similarity measure between two fomulas ¢; and ¢; defined as follows:

Sim(pi, ¢5) = — : '
7 min(|[S (i, )| 1S, )
where [|S(i,-)||1 represents the number of Kripke structures satisfying formula ¢;; in

fact, S(i, ) represents the i-th row of matrix S, while ||S(4, -)||1 represents its 1-norm
(also called Manhattan distance).

(2)

9The implementation is open-source and is made available through the following
repository: https:/github.com/aclai-lab/ESSLLI2025.

aclai.unife.it/en/

Application

Given a vector space embedding as described in eq. 1 and a notion of similarity such
as the one in eq. 2, one could easily solve, for example, the problem of stating if a
formula entails another, i.e., ¢; =. ¢; where
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In fact:
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An example is given in 2. One should notice that this still an heuristic: there could
be amodel M ¢ M : M,w; = ¢; AN M,w; £ ¢;. Hence, the choice of F and M is
crucial to get reliable results.

Another application of interest could be solving the minimization problem, which can
be defined as follows: given a formula ¢y, find the formula s which satisfies exactly
the same models (i.e., ¢ e 1 A @1 e ) and has the least number of symbols. One
possible way to solve this problem is considering all formulas:

p € F :sim(pi, ¢5) = LA S, )l = 150 )l (4)

and taking the one with the least number of symbols. This could be taken even a
step further if someone is interested in getting a least number of symbols even at
the cost of the formulas disagreeing on some models. Should this be the case, one
could consider a relaxation of the problem, refered to as quasi-minimization, setting a
similarity threshold 7, and considering all formulas ¢ € F : sim(¢1, ) > 7 and taking
the one with the least number of symbols.

M

Figure 2. Example of a semantic entailment ¢ =, @2 in a 3-dimensional vector space;
1 is the projection of 9 on the (hyper)-plane formed by the models satisfying ;.

Conclusions

In this work, a possible embedding of modal logic formulas has been proposed aiming
to solve classical problems, such as minimization and entailment. One should notice
how considering only binary encodings is rather constraining, resulting in much sparsity
in the vector space. Hence, a natural next step would be generalizing this approach to
modal fuzzy logics. Furthermore, the effectiveness of the embedding should be tested,
possibly leveraging a modal reasoner checking validity over a broad set of formulas.
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