
Università degli Studi di Ferrara
Corso di Laurea in Informatica

A Laravel package
for systematic construction of
symbolic intelligent systems

Relatore:
Prof. Guido Sciavicco

Correlatori:
Giovanni Pagliarini

Prof. Giacomo Piva

Laureando:
Alberto Paparella

Anno Accademico 2020− 2021

Contents

Page

1 Introduction 7

2 Acknowledgements 9

3 Preliminaries 11
3.1 Hierarchical problems . 11
3.2 Learners . 12
3.3 Rules . 13
3.4 Rule-based models . 14
3.5 Rule-extraction . 16

3.5.1 RIPPERk . 16
3.5.2 CART . 17

4 Technologies 19
4.1 Laravel . 19

4.1.1 What is Laravel . 20
4.1.2 Creating a Laravel project 20
4.1.3 Project configuration . 21
4.1.4 Laravel popular use cases 21

4.2 Scikit-Learn . 22

4.2.1 What is Scikit-Learn . 22
4.2.2 How to use Scikit-Learn . 23
4.2.3 Classification using Scikit-Learn decision trees 23
4.2.4 A little digression on decision trees learning 25

4.3 Wittgenstein . 26
4.3.1 What is Wittgenstein . 27
4.3.2 Classification using Wittgenstein rule-based models 27

5 Implementation 29
5.1 Package structure . 29

5.1.1 The config folder . 32
5.1.2 The database folder . 33
5.1.3 The src folder . 34
5.1.4 The tests folder . 36

5.2 Package database . 37
5.3 How to use the package . 40

5.3.1 Install . 40
5.3.2 Configuring the database . 40
5.3.3 Training . 42
5.3.4 Prediction . 44

6 An example use case: automatic advertisement 47
6.1 The problem explained . 47
6.2 How to effectively use the package to solve the problem 49

7 A real application: automated treatment suggestion 53
7.1 What is the CMO . 54
7.2 The problem: treatment suggestion for osteoporosis 54
7.3 How to use the package to solve the problem 58
7.4 Experiment . 64

8 Conclusions 69

Riassunto

Pitòn è un pacchetto sviluppato per il framework Laravel che offre strumenti di
machine learning interpretabile per la risoluzione di problemi organizzati in strut-
tura gerarchica a partire dai dati presenti in un database MySQL.
Scopo delle seguenti pagine è descrivere la struttura e le caratteristiche di questi
problemi gerarchici e l’approccio del pacchetto alla risoluzione di questi per mezzo
della creazione di modelli basati su regole (e quindi facilmente interpretabili dal-
l’utente umano), di cui ci impegneremo a descriverne l’utilità.
Verranno inoltre discusse le tecnologie utilizzate e presentati degli esempi applica-
tivi del pacchetto, allo scopo di dimostrarne, fra le altre cose, la generalità, e quindi
la vastità dei campi e delle modalità in cui può essere utilizzato: dal suggerimento
automatico di inserzioni pubblicitarie in un social network, al suggerimento delle
terapie per i medici sulla base dei pazienti serviti in passato, ai problemi di clas-
sificazione, come per esempio quello di classificare specie e famiglie di fiori.
Varie sono le caratteristiche che rendono unico e innovativo questo pacchetto:

• la scelta di svilupparlo utilizzando come linguaggio principale PHP, sicu-
ramente meno efficiente di altri per quanto riguarda l’ambito del machine
learning, ma che rimane tutt’oggi il linguaggio più usato in ambito web;

• la possibilità di poter specificare direttamente al pacchetto come leggere da
un database MySQL i dati da cui estrarre i modelli basati su regole;

• la capacità di poter derivare e gestire gerarchie di problemi.

5

Chapter 1

Introduction

Pitòn is a Laravel package which offers machine learning utilities for solving hierarc-
hically-arranged problems, where the available data is stored in a MySQL database,
through the creation of rule-based models. Therefore, the intent of the first chap-
ters will be to discuss what is a hierarchical structured problem, what are rule-
based models, what are rules, and what algorithms are used to extract them.
We will then discuss the technologies used by the package, starting from the Lar-
avel framework, that is, the environment in which the package has been developed,
and introducing the machine learning Python packages Scikit-Learn and Wittgen-
stein.
Chapter 5 will finally present how the package works, including its structure, the
structure of the database used to store the models, which we decided to separate
from the application database, and how to use it at its best.
Then we will present a possible application of the package to solve a real problem,
that is, a social network automatic advertisement system which decides what ads
to show the user based on the researches of other users with similar characteristics,
also going through a possible package configuration.
Last but not least, we will discuss the environment which already implements
the package, that is, the University of Ferrara’s Research Center for the Study

8 Chapter 1. Introduction

of Menopause and Osteoporosis platform, serving as a clinical decision support
system and therefore allowing physicians to receive suggestions for prevention and
treatment for osteoporosis, given their previous choices for similar patients.

Chapter 2

Acknowledgements

I would like to express my deep gratitude to Professor Guido Sciavicco, for orches-
trating this thesis and for inspiring my interest in the development of explainable
AI, and Dr. Giovanni Pagliarini, for his patient guidance and his valuable and
constructive suggestions during the development of this work. You are both a
great inspiration for me.
I would also like to extend my thanks to Professor Giacomo Piva, for giving me
the opportunity to work on this project, and Dr. Andrea Bercé, as well as all the
staff of the CMO project.
I would also like to offer my special thanks to Dr. Eduard Ionel Stan, for also
inspiring me in taking the path of research.
Finally, I wish to thank my parents and my girlfriend, for their support and en-
couragement throughout these years, and my dear roommate Filippo.

10 Chapter 2. Acknowledgements

Chapter 3

Preliminaries

The purpose of this chapter is to make an introduction of the mathematical con-
cepts the package is built on: hierarchical problems, rule-based models, rules and
learners. We will introduce some examples for a better understanding, and some
important properties for some of these objects that are used by the package im-
plementation for a better efficiency.

3.1 Hierarchical problems

The primary purpose of the package is the solution of classification problems ar-
ranged in hierarchies, easily representable as trees, using binary classification for
each problem. The package refers to a hierarchy of sub-problems as problem.
Let’s look at an example: Figure 3.1 represents an example of a hierarchy of prob-
lems associated with the classification of flowers belonging to the Iridaceae family.
We can empathise how:

• at the first level of the hierarchy the classification is on the flower genre,
and the domain of the classification is: {Crocosmia, Ferraria, Iris, Moraea,
Tigridia} [1];

12 Chapter 3. Preliminaries

Iridaceae

Crocosmia

.

Ferraria

.

Iris

Setosa Versicolor Virginica

Moraea

.

Tigridia

.

Figure 3.1: Hierarchy of problems for Iridaceae classification

• at the second level of the hierarchy the classification is based on the flower
species, and for example for the Iris genre the species domain will be {Setosa,
Versicolor, Virginica} [2].

3.2 Learners

To solve each binary sub-problem, we make use of machine learning algorithms,
and in the package we refer to them as learners.
Machine learning offers many learning algorithms, and these are divided into many
subareas [3]: supervised learning, unsupervised learning, reinforcement learning,
semi-supervised learning, inductive learning, and so on.
Specifically, the package can be placed in the supervised learning area, making use
of labeled data. This kind of learning characterises a class of problems involving
the use of an algorithm to learn a mapping between input examples and the target
variable. The result of this process is a model fit on training data, comprised of
inputs and outputs, and used to make predictions on test sets, where only the
inputs are provided and the outputs from the model are compared to the withheld
target variables and used to estimate the accuracy of the model.
We distinguish between two main types of supervised learning: regression, which
involves predicting a numerical label, and classification, which involves predicting
a class label. During the development of the package, we decided to focus on the
last one; however, the whole package can easily be extended to support regression
problems as well.

3.3. Rules 13

For medical and research needs, we focused on interpretable models, in particular
on rule-based models. These algorithms read from a given dataset and extract
information about the classification on one class, giving as a result a Rule-Based
Model, that is, an ordered set of rules, where rules are sets of conditions that
characterise a class. Given a new instance similar to the ones in the dataset, using
the model it is possible to predict the label associated with the new instance.

3.3 Rules

A rule is a formula of the type:

ρ : p1 ∧ ... ∧ pn → C

where p1, ..., pn are logical propositions over the attributes of the problem, and
C is a class. Each pi is called a decision or antecedent, and its format depends on
the particular type of attribute on which is taken.
In fact, each antecedent is a tuple of:

pi : (attribute, operator, value)

Specifically, we distinguish between continuous and discrete antecedents based on
the associated attribute type:

• continuous antecedents are based on continuous or numerical attributes, and
support conditional operators such as >, ≥, <, ≤;

• discrete antecedents are based on discrete or categorical attributes, that are
attributes associated to a domain of possible values; they support conditional
operators such as = and ̸=.

C is also called a consequent, and usually corresponds to a value of the domain of
a particular categorical attribute, denoted as class attribute.
In other words, given the attributes of a problem, it is possible to choose a cate-
gorical attribute among them, and classify each instance based on its domain. We
can refer to this attribute as class attribute, to its domain as {C1, ..., Cm} and to
each value of the domain as a class.
Among all classification problems, important for us will be binary classification

14 Chapter 3. Preliminaries

problems, that are, problems where the class attribute has exactly two values in its
domain, which can therefore be translated as {true, false}. We refer to these at-
tributes as binary categorical attributes. In fact, every classification problem with
more than two classes (multiclass problem) can be translated to a set of binary
classification problems, one for each attribute of the original domain.
In designing the package, we chose to translate every multiclass problem into a set
of binary classification problems, both for simplicity and, in some cases, to meet
machine learning algorithms’ constraints (i.e. Wittgenstein learners).
It is also important for our discussion to specify the following rule, needed to sat-
isfy other machine learning algorithms’ constraints (that are, Scikit-Learn learners,
that require all attributes to be numerical): given a binary categorical attribute
of domain {value1, value2}, it can be transformed into a numerical attribute of
domain {0, 1}. This new attribute will assume, for each instance, value of 0 if
the instance had value1 as a value, 1 otherwise. It is then possible to transform
the associated antecedent into a categorical antecedent associated to the original
categorical attribute of domain {value1, value2}. This new antecedent will assume
value value1 if the numerical antecedent had value <= 0.5, value2 otherwise.
Doing so, we can translate all categorical attributes into numerical attributes be-
fore the learner is called, and then translate their relative antecedents into cate-
gorical antecedents associated to the original categorical attribute, so that we can
use it at prediction time.

3.4 Rule-based models

A rule-based model is an ordered set of rules:

Γ =


p11 ∧ ... ∧ p1n → C1 else

p21 ∧ ... ∧ p2n → C2 else

...

pn1 ∧ ... ∧ pnn → Cn

In our discussion we will also refer to a model as a classifier. This is because given
a new instance having at least the same attributes as the one found in the rules, the
model can classify it, it can predict its class attribute value. Furthermore, it can

3.4. Rule-based models 15

give information about the activated rule, motivating why it chose a specific class,
and even some information about the reliability of the prediction if the model has
been tested on a test dataset.
For our discussion, we will focus on binary rule-based model, that is, a model
which classifies on a binary categorical class attribute. In other words, a binary
rule-based classifier classifies the given instances on a single class, and given a new
instance it will predict if it belongs or not to that class.
These models can be seen as follows:

Γ =

 p1 ∨ ... ∨ pn → C else

¬C

or, with an extended form:

Γ =



p11 ∧ ... ∧ p1n → C else

p21 ∧ ... ∧ p2n → C else

...

pn1 ∧ ... ∧ pnn → C else

¬C

where the rule p1 ∨ ...∨ pn → C is equal to (p11 ∧ ...∧ p1n)∨ ...∨ (pn1 ∧ ...∧ pnn) → C.
In other words, binary rule-based models work as follows:

1. try the first rule, if it activates predict C, if not try the following rule, and
so on;

2. if all rules fail, then predict ¬C, such as the instance is not of class C.

The first p11 ∧ ...∧ p1m antecedents of each rule (excluding the first rule), with m <
n, correspond to the negation of all previous rules. So for example, the third rule
for a binary rule based model can be seen as p31∧ ...∧ p3n ≡ ¬(p11∧ ...∧ p1n)∧¬(p21∧
... ∧ p2n) ∧ p3m+1 ∧ ... ∧ p3n.
Note that this brings another feature that we took for granted so far: only one
rule can activate for each model. In fact, the final rule which predicts ¬C is not
an empty rule! It is rather the conjunction of the negations of all previous rules.
These properties will come in handy for the package, as we will simplify the rules

16 Chapter 3. Preliminaries

by storing, for each one, only its new antecedents, taking advantage of the in-order
exploration of the rules, knowing that if we are exploring the i+1 rule, the first i
rules have already been discharged.

3.5 Rule-extraction

Within the package, two are the main algorithms supported at the time of writ-
ing: the RIPPERk [4] algorithm and the CART [5] algorithm. The RIPPERk
algorithm is implemented in three, slightly different ways, one fully developed in
PHP, called PRIP, and two developed in Python and offered by the Wittgenstein
Python package, IREP and RIPPERk. Meanwhile, an optimised version of the
CART algorithm is offered by the Scikit-Learn package. In this section we will
briefly discuss how these algorithms work and how they perform rule-extraction.

3.5.1 RIPPERk

The RIPPERk algorithm, originally proposed by Cohen, is a propositional rule
learning algorithm that performs well on large, noisy datasets, and scales nearly
linearly with the number of training examples. It is used in order to solve binary
classification problems.
As a separate and conquer algorithm, it builds a rule set in a greedy fashion, one
rule at a time. After a rule is found, all examples covered by the rule, both positive
and negative, are deleted. This process repeats until some stopping condition is
satisfied. After the initial rule set is acquired, it is then optimised.
In order to build a rule, RIPPERk uses the following strategy:

1. It randomly partitions all the examples which have not been covered by any
rule yet into two subsets: a growing set and a pruning set.

2. It grows a rule by greedily adding conditions until the rule reaches an accu-
racy of 100%, so that the rule does not cover any negative example, using
only the growing set, testing every possible value for each attribute and
choosing the condition with the greatest information gain.

3. To prevent growing set overfitting, the algorithm immediately prunes the
rule so as to maximize its performance on the pruning data. The pruning

3.5. Rule-extraction 17

considers deleting any final sequence of conditions from the rule and chooses
the deletion that maximizes some function w. This process is repeated until
no deletion improves the value of w.

4. Lastly, all the positive and negative examples covered by the rule are re-
moved, and the algorithm repeats from the step 1.

5. RIPPERk stops adding rules when there are no more positive examples left
or when a rule has an unacceptably large error rate, or when the last rule
added is too complicated, such as the description length is more than 64 bits
larger than the smallest description encountered so far.

The ruleset R produced by the learning algorithm is then taken as a starting point
for a subsequent optimization process. This process re-examines all the rules in
the same order they have been learned, and for each rule constructs two alterna-
tive rules, one called replacement rule rp and the other referred to as revision rule
rv. The replacement rule is created by growing and the pruning a rule ri from
the ground up. The revision rule is created in a similar fashion, except that the
revision is grown by greedily adding conditions to ri rather that the empty rule.
To decide which version between rv and rp to retain, the Minimum Description
Length criterion is used. Lastly, the rules are added to cover any remaining pos-
itive examples using the building stage.
The optimization stage can be reiterated again k times. The ruleset is then simpli-
fied by examining each rule in turn (starting with the last added rule) and deleting
rules so as to reduce total description length.

3.5.2 CART

The Classification And Regression Trees algorithm, often abbreviated into CART,
is a classification algorithm for building decision trees. It is based on Gini’s impu-
rity index splitting criterion, which is defined for a generic node t as:

i(t) =
∑
i,j

C(i|j)p(i|t)p(j|t),

where C(i|j) represents the cost of misclassifying a class j case as a class i case and
p(i|t) and p(j|t) are the probabilities to be into a i or into a j case, respectively.

18 Chapter 3. Preliminaries

In the CART algorithm, C(i|j) = 1 if i ̸= j, and C(i|j) = 0 if i = j.
The algorithm builds a binary tree splitting each node into two child nodes re-
peatedly using the following steps:

1. For each feature (i.e. each attribute) with K different values, there exist K-1
possible splits; choose for each feature the split that maximizes the splitting
criterion.

2. Among the best splits from step 1 choose the one which maximizes the
splitting criterion.

3. Split the node using the best node split from step 2 and repeat from step 1
until a certain stopping criterion is satisfied.

Then, in order to enhance the generalization of the resulting decision tree, pruning
is applied. The pruning algorithm is based on a number of folds N and consists of
the following steps:

1. Split randomly training data into N folds.

2. Select a pruning level for the tree (level 0 equals to the full decision tree).

3. Use N − 1 folds to create N − 1 new pruned trees and estimate the error on
the Nth fold.

4. Repeat from step 2 until all pruning levels are used.

5. Find the smallest error and use the pruning level assigned to it.

6. Until the pruning level is reached, remove all the leafs in the lowest tree level
and assign the decision class to their parent node. The decision value is equal
to the class with the higher number of cases covered by the node.

Chapter 4

Technologies

Initially developed as a PHP vanilla project, Pitòn found its best fit as a Laravel
[6] package. More in detail, it has been developed as a Laravel 6.* package, which
at the time of writing is a reasonably stable version and is easily supported by the
following versions. The PHP distribution in use is version 7.1.
To offer a wider choice of learning algorithms, the package makes use of two Python
packages for machine learning: Scikit-Learn [8] and Wittgenstein [12]. Their use
is, of course, optional to the user, having the package its own learner, but is surely
advised, offering a wider choice of models for the same sub-problem and therefore
the possibility to switch between them in case of higher accuracies for specific
cases. The meaning of this chapter is to briefly introduce these technologies,
going through their configuration and overviewing their fundamental components,
especially the ones needed by the package.

4.1 Laravel

For the Laravel framework, the focus will be on the structure and the configura-
tion of a project [7] rather than how to use the framework and its tools for web
developing, such as models, controllers, migrations, Blade templates, and so on.

20 Chapter 4. Technologies

The purpose of this choice is to give an introduction of the files and commands
needed or used by the package, rather than explaining how to create a web appli-
cation, which is not the scope of this document.

4.1.1 What is Laravel

Laravel is a web application framework with an expressive, elegant syntax. Its
purpose is to ease common tasks used in most web projects, providing a struc-
ture and starting point for creating modern, full-stack web applications, as well as
powerful features such as thorough dependency injection, an expressive database
abstraction layer, queues and scheduled jobs, and unit and integration testing.
Laravel is often referred to as a progressive framework. In fact, it gives senior
developers robust tools for dependency injection, unit testing, queues, real-time
events, and more. Moreover, it is fine-tuned for building professional web applica-
tions and ready to handle enterprise work loads.
Laravel is also incredibly scalable, thanks to the scaling-friendly nature of PHP
and Laravel’s built-in support for fast, distributed cache systems like Redis. In
fact, Laravel applications have been easily scaled to handle hundreds of millions
of request per month. Should not this be enough, platforms like Laravel Vapor
allows to run Laravel applications at nearly limitless scale on AWS’s latest server-
less technology. Furthermore, Laravel combines a large number of packages in the
PHP ecosystem to offer a robust and developer friendly framework, and developers
from all around the world can contribute to the framework.

4.1.2 Creating a Laravel project

There are a variety of options for developing and running a Laravel project, one
of these being Sail, a built-in solution for running Laravel projects using Docker.
Docker is a tool for running applications and services in small, light-weight contain-
ers which do not interfere with local computers’ installed software or configuration.
This means the developer does not have to worry about configuring or setting up
complicated development tools such as web servers and databases on his personal
computer.
Laravel Sail is a light-weight command-line interface for interacting with Laravel’s
default Docker configuration. It provides a great starting point for building a Lar-

4.1. Laravel 21

avel application using PHP, MySQL, and Redis without requiring prior Docker ex-
perience. Everything about Sail can be customized using the docker-compose.yml
file included with Laravel.
Alternatively, it is possible to create a new Laravel project by using Composer via
the following command:

composer create-project laravel/laravel example-app
After the application has been created, it is possible to start Laravel’s local devel-
opment server using the Artisan CLI’s server command:

php artisan serve

4.1.3 Project configuration

All the configuration files for the Laravel framework are stored in the project’s
config directory. Laravel needs almost no additional configuration out of the
box. However, it is good practice to review the config/app.php file and its doc-
umentation, which contains several options such as timezone and locale that are
often changed according to the application.
Since many of Laravel’s configuration option values may vary depending on whether
an application is running on a local computer or on a production web server, many
important configuration values are defined using the .env file that exists at the
root of the application. This .env file should not be committed to the application’s
source control, since each developer/server using the application could require a
different environment configuration. Furthermore, this would be a security risk
in the event an intruder gains access to the source control repository, since any
sensitive credentials would get exposed.
Laravel should always be served out of the root of the web directory configured for
the web server. The developer should also not attempt to serve a Laravel applica-
tion out of a subdirectory of the web directory. Attempting to do so could expose
sensitive files that exist within the application.

4.1.4 Laravel popular use cases

There are a variety of ways to use Laravel. Laravel may serve as a full stack
framework, using Laravel to route requests to the application and render its fron-
tend via Blade templates or using a single-page application hybrid technology like

22 Chapter 4. Technologies

Inertia.js. This is the most common way to use the Laravel framework. It makes
vast use of routing, views, and the Eloquent ORM, and community packages like
Livewire and Inertia.js, which allows to use Laravel as a full-stack framework while
enjoying many of the UI benefits provided by single-page JavaScript applications.
Alternatively, Laravel may also serve as an API backend to a JavaScript single-page
application or mobile application, such as a Next.js application. In this context,
Laravel can also be used to provide authentication and data storage/retrieval for
the application, while also taking advantage of Laravel’s powerful services such
as queues, emails, notifications, and more. It makes vast use of routing, Laravel
Sanctum, and the Eloquent ORM.

4.2 Scikit-Learn

Scikit-Learn is a Python package containing a wide set of tools for machine learn-
ing. However, at the moment of writing, the Pitòn package uses only one of these
tools, that is its DecisionTreeClassifier, a classifier which implements an optimised
version of the CART algorithm.
Scikit-Learn does not support rule-based models. However, it offers another sym-
bolic model, referred to as decision trees. Rule-based models and decision trees
are equivalent; therefore it is possible to use an algorithm to create a decision tree
and then translate it into a rule-based model.
As for Laravel, after a brief overview of the package, the focus will be more on
what the Pitòn package actually uses rather than the usage of the Scikit-Learn
package and all of its features. However, it is fair to specify that the Pitòn pack-
age is developed on the purpose to support, with little changes, more classifiers of
the Scikit-Learn package in the future.

4.2.1 What is Scikit-Learn

Scikit-Learn is an open source machine learning library that supports supervised
and unsupervised learning. It also provides various tools for model fitting, data
preprocessing, model selection and evaluation, and many other utilities.
It is, in fact, a Python module built on top of SciPy and is distributed under the
3-Clause SBD license.

4.2. Scikit-Learn 23

The project was started in 2007 by David Cournapeau as a Google Summer of
Code project, and since then many volunteers have contributed [9]. It is currently
maintained by a team of volunteers, it is accessible to everybody, and it is reusable
in various contexts.

4.2.2 How to use Scikit-Learn

Scikit-Learn provides dozens of built-in machine learning algorithms and models,
called estimators [10]. Each estimator can be fitted to some data using its fit
method. The fit method generally accepts 2 inputs:

• The samples’ matrix X. The size of X is typically (n_samples, n_features),
which means that samples are represented as rows and features are repre-
sented as columns.

• The target values y which are real numbers for regression tasks, or integers for
classification (or any other discrete set of values). For unsupervised learning
tasks, y does not need to be specified. y is usually a one dimensional array
where the ith entry corresponds to the target of the ith sample (row) of X.

Both X and y are usually expected to be numpy arrays or equivalent array-like data
types, though some estimators work with other formats such as sparse matrices.

4.2.3 Classification using Scikit-Learn decision trees

Decision trees (DTs) [11] are a supervised learning method used for classification
and regression. The goal is to create a model that predicts the value of a target
variable by learning simple decision rules inferred from the data features. A tree
can be seen as a piecewise constant approximation.
Decision trees are simple to understand and to interpret, in fact they can also be
visualized. They require little data preparation, however it is important to notice
that the Scikit-Learn module does not support missing values. The cost of using
the tree (i.e., predicting data) is logarithmic in the number of data points used
to train the tree. They are able to handle both numerical and categorical data.
However, Scikit-Learn implementation does not support categorical variables for
now. Furthermore, they are a white box model: if a given situation is observable

24 Chapter 4. Technologies

in a model, the explanation for the condition is easily explained by boolean logic;
by contrast, in a black box model (e.g., in an artificial network), results may be
more difficult to interpret. It is also possible to validate a model using statistical
tests: this makes it possible to account for the reliability of the model. Last but
not least, they perform well even if their assumptions are somewhat violated by
the true model from which the data were generated.
However, not all that glitters is gold. Decision tree learners can, in fact, create
over-complex trees that do not generalise the data well. This is called overfitting.
Mechanisms such as pruning, setting the minimum number of samples required
at a leaf node or setting the maximum depth of the tree are necessary to avoid
this problem. Decision trees can also be unstable because small variations in the
data might result in a completely different tree being generated. This problem is
mitigated by using decision trees within an ensemble. Predictions of decision trees
are neither smooth nor continuous, but piecewise constant approximation.
The problem of learning an optimal decision tree is known to be NP-complete
under several aspects of optimality and even for simple concepts. Consequently,
practical decision-tree learning algorithms are based on heuristic algorithms such
as the greedy algorithm where locally optimal decisions are made at each node.
Such algorithms cannot guarantee to return the globally optimal decision tree.
This can be mitigated by training multiple trees in an ensemble learner, where the
features and samples are randomly sampled with replacement. Last but not least,
decision tree learners create biased trees if some classes dominate. It is therefore
recommended balancing the dataset prior to fitting with the decision tree.
DecisionTreeClassifier is a class capable of performing multiclass classification
on a dataset. As with other classifiers, DecisionTreeClassifier takes as input
two arrays: an array X, sparse or dense, of shape (n_samples, n_features) hold-
ing the training samples, and an array Y of integer values, shape (n_samples),
holding the class labels for the training samples:

>>> from s k l e a rn import t r e e
>>> X = [[0 , 0] , [1 , 1]]
>>> Y = [0 , 1]
>>> c l f = t r e e . D e c i s i o nT r e eC l a s s i f i e r ()
>>> c l f = c l f . f i t (X,Y)

4.2. Scikit-Learn 25

After being fitted, the model can then be used to predict the class of samples:

>>> c l f . p r ed i c t ([[2 . , 2 .]])
array ([1])

In case that there are multiple classes with the same and highest probability, the
classifier will predict the class with the lowest index amongst those classes.
As an alternative to outputting a specific class, the probability of each class can
be predicted, which is the fraction of training samples of the class in a leaf:

>>> c l f . predict_proba ([[2 . , 2 .]])
array ([[0 . , 1 .]])

DecisionTreeClassifier is capable of both binary (where the labels are [-1, 1])
classification and multiclass (where the labels are [0, ..., K-1]) classification.
Using the Iris dataset, it is possible to construct a tree as follows:

>>> from s k l e a rn . da ta s e t s import l o ad_ i r i s
>>> from s k l e a rn import t r e e
>>> i r i s = l o ad_ i r i s ()
>>> X, y = i r i s . data , i r i s . t a r g e t
>>> c l f = t r e e . D e c i s i o nT r e eC l a s s i f i e r ()
>>> c l f = c l f . f i t (X, y)

Once trained, it is possible to plot the tree with the plot_tree function:

>>> t r e e . p lo t_tree (c l f)

Alternatively, the tree can also be exported in textual format with the function
export_text.

4.2.4 A little digression on decision trees learning

ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The al-
gorithm creates a multiway tree, finding for each node (i.e. in a greedy manner)
the categorical feature that will yield the largest information gain for categorical
targets. When a tree is grown, a pruning step is usually applied to improve the
ability of the tree to generalise to unseen data.
C4.5 is the successor to ID3 and removed the restriction that features must be

26 Chapter 4. Technologies

categorical by dynamically defining a discrete attribute (based on numerical vari-
ables) that partitions the continuous attribute value into a discrete set of intervals.
C4.5 converts the trained trees (i.e. the output of the ID3 algorithm) into sets of
if-then rules. The accuracy of each rule is then evaluated to determine the order in
which they should be applied. Pruning is done by removing a rule’s precondition
if the accuracy of the rule improves without it.
C5.0 is Quinlan’s latest version release under a proprietary license. It uses less
memory and builds smaller rulesets than C4.5 while being more accurate. CART
(Classification and Regression Trees) is very similar to C4.5, but it differs in that
it supports numerical target variables (regression) and does not compute rule
sets. CART constructs binary trees using the feature and threshold that yield
the largest information gain at each node. Scikit-Learn uses an optimised version
of the CART algorithm; however, Scikit-Learn implementation does not support
categorical variables for now. Regarding complexity, the run time cost to con-
struct a balanced binary tree is O(nsnf log (ns)) and query time O(log (ns)), with
ns samples and nf features.
Although the tree construction algorithm attempts to generate balanced trees,
they will not always be balanced. Assuming that the subtrees remain approxi-
mately balanced, the cost at each node consists of searching through O(nf) to
find the feature that offers the largest reduction in entropy. This has a cost of
O(nfns log (ns)) at each node, leading to a total cost of over the entire trees (by
summing the cost at each node) of O(nfn

2
s log (ns)).

4.3 Wittgenstein

Like Scikit-Learn, Wittgenstein is another Python package which offers rule-based
models and two classifiers to extract them. However, this time the Pitòn package
offers support for all its algorithms implemented at the time of writing, still being
developed to support other Wittgenstein classifiers in case they are added in the
future.

4.3. Wittgenstein 27

4.3.1 What is Wittgenstein

Wittgenstein is a Python package which implements two interpretable coverage-
based ruleset algorithms: IREP and RIPPERk, as well as additional features for
model interpretation. Performance is similar to Scikit-Learn’s DecisionTree CART
implementation. Also, the syntax is very similar to Scikit-Learn’s.

4.3.2 Classification using Wittgenstein rule-based models

Suppose we have already loaded and split our data, for example as follows:

>>> import pandas as pd
>>> df = pd . read_csv (dataset_f i l ename)
>>> from s k l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t
>>> tra in , t e s t = t r a i n_t e s t_sp l i t (df , t e s t_s i z e =.33)

To train a RIPPER or IREP classifier, the fit method is used:

>>> import wi t t g en s t e i n as lw
>>> r ippe r_c l f = lw .RIPPER() # Or i r e p_c l f = lw . IREP()
>>> r ippe r_c l f . f i t (df , c l a s s_ f e a t=' Poisonous /Edib le ' ,

pos_class='p ') # Or pass X and y data to . f i t

It is then possible to access the underlying trained model with the ruleset_ at-
tribute, or output with out_model(). A ruleset is a disjunction of conjunctions.
In other words, the model predicts positive class if any of the inner-nested condition-
combinations are all true. IREP models tend to be higher bias, RIPPER’s higher
variance.

28 Chapter 4. Technologies

Chapter 5

Implementation

Now that we have introduced all the elements and the technologies the package is
built on, it is finally time to see how all comes together.
We will first discuss how the package is structured, and how its parts work together
to solve classification problems.
Then, we will take a look on the database the package uses. In fact, to maintain
information about the created rule-based models, Pitòn will rely on a different
MySQL database from the one containing the application information, to keep
things clean.
Last but not least, we will finally discuss how the package can be configured and
used. The next chapters will serve as an example.

5.1 Package structure

Being a Laravel package, Pitòn lies on the general structure provided by the frame-
work, which is also very similar to the structure of Laravel’s web applications.
The main folders we find on a first level are config, database, src and tests.
Figure 5.1 is a simple representation of the package structure.

30 Chapter 5. Implementation

• config

– iris.php

– prip.php

– problem.php

– sklearn_cart.php

– wittgenstein_irep.php

– wittgenstein_ripperk.php

• database

– factories

∗ ...

– migrations

∗ 2021_04_08_000000_create_piton_class_model_table.php

∗ 2021_04_15_000000_create_piton_model_version_table.php

∗ 2021_06_07_000000_create_piton_problems_table.php

∗ 2021_06_07_000000_create_piton_rules_table.php

• src

– Antecedents

∗ Antecedent.php

∗ ContinuousAntecedent.php

∗ DiscreteAntecedent.php

– Attributes

∗ Attribute.php

∗ ContinuousAttribute.php

∗ DiscreteAttribute.php

– Console

∗ CreateExample.php

∗ PredictByIdentifier.php

5.1. Package structure 31

∗ UpdateModels.php

∗ UpdateModelsWithInterface.php

– DBFit

∗ DBFit.php

– DiscriminativeModels

∗ DiscriminativeModel.php

∗ RuleBasedModel.php

– Examples

∗ createIrisDataset.py

∗ iris.csv

– Facades

∗ Piton.php

∗ Utils.php

– Instances

∗ Instances.php

– Learners

∗ PythonLearners

· lib.py

· sklearn_learner.py

· wittgenstein_learner.py

∗ Learner.php

∗ PRip.php

∗ SklearnLearner.php

∗ WittgensteinLearner.php

– RuleStats

∗ RuleStats.php

– Rules

∗ ClassificationRule.php

32 Chapter 5. Implementation

∗ RipperRule.php

∗ Rule.php

– ClassModel.php

– ModelVersion.php

– Piton.php

– PitonBaseServiceProvider.php

– Problem.php

– Utils.php

• tests

– ...

Figure 5.1: Package Structure

5.1.1 The config folder

The config folder, as the name suggests, contains the configuration files that the
user can import in its project via the publishing command:

php artisan vendor:publish --tag=\<config-file-name\>
Pitòn offers a configuration file for each of its learners, so that the experienced user
can change some properties of the execution, for example specifying the maximum
depth for a decision tree, or the maximum number of RIPPERk iterations or maxi-
mum number of rules, and so on. However, these files do not need to be changed in
order for the package to run, as they already offer a general standard configuration
for most cases. They are extensively documented in file, so that the user can easily
know what every property does and what values support. These files are prip.php,
sklearn_cart.php, wittgenstein_irep.php and wittgenstein_ripperk.php.
An example of publishing for one for these in a project is:

php artisan vendor:publish --tag=sklearn_cart
which imports the config file sklearn_cart.php in the config folder of the user’s
Laravel project. It is needed to import a learner configuration file before using

5.1. Package structure 33

that algorithm, even if no changes are to be applied.
Together with these, problem.php will be the fundamental configuration file for
the package to work. In this file, the user can specify how the package will read
from the database, specifying among other things which tables to use and how
to join them, which columns to use and even how to treat missing information
on these columns (i.e. NULL values), which columns represent the classification
attributes and on which level, and so on.
Differently from the learners’ configuration files, we do not provide a general con-
figuration for problem.php, being really dependent on the application. However,
as the learners’ configuration files, it is heavily documented. Furthermore, an
example of configuration is represented by the file iris.php.

5.1.2 The database folder

The database folder contains two folders: factories and migrations. We will
only discuss the migrations folder, as factories only contains files used for
testing purpose, useful in the beginning of the development but at the moment of
writing deprecated.
The migrations folder contains all the information about the structure of the
database of the package. In fact, each file corresponds to a table in the Pitòn
database:

• 2021_04_08_000000_create_piton_class_model_table.php contains in-
formation about the piton_class_model table, which is used to store infor-
mation about the models.

• 2021_04_15_000000_create_piton_model_version_table.php contains in-
formation about the piton_model_version table, which is used to store in-
formation about the hierarchies and corresponds to one instance for each
execution; each instance of piton_model_version is associated with many
instances of piton_model_class.

• 2021_06_07_000000_create_piton_problems_table.php contains informa-
tion about the problems the package has associated a hierarchy so far; every
instance can be associated with many instances of piton_model_version, as

34 Chapter 5. Implementation

we can have different executions on the same problem with new data, for
example repeating the learning process at scheduled periods.

• 2021_06_07_000000_create_piton_rules_table.php finally contains in-
formation about the rules of each model.

These tables will be discussed in the next section.

5.1.3 The src folder

Like the app folder for a Laravel project contains the hearth of an application, the
src folder contains all the working bricks of the package.
The Attributes folder contains the logic behind attributes, split into two classes:
one for continuous attributes and one for discrete attributes, both extending the
abstract class Attribute. In fact, we offer the same operations for both classes,
such as methods to create an attribute, to get information about its content, trans-
late it into a json format to store it into the database, and so on, but they differ
in structure (as seen in par. 3.3). For instance, a discrete attribute will have a
domain, while a continuous attribute will not.
The Antecedents folder contains the logic behind antecedents, split in class with
the same structure of the attributes. Antecedents and attributes are, as discussed
in par. 3.3, very connected: an antecedent, in fact, will contain an attribute as
an attribute of the class, which will be continuous for continuous antecedents and
discrete for discrete attributes. Continuous attributes and discrete attributes sup-
port different operators.
The Instances folder contains the specification of the Instances class and all
its methods, that is, the way of a package to define a dataset, an object which
contains information about the attributes (even with their domain, in case they
have one), the instances, and for each instance an id and a weight. It can be seen
as a table containing all the problem data, with the first column being the class
attribute and the last column being the weight, and moreover storing information
about the table meta-data (such as information about the attributes). Normally,
the package will read from a database and create an associated Instances object for
each sub-problem. This is also the object passed to learners to create rule-based
models. If the learner is an external learner written in Python, the Instances ob-
ject is passed to the Python script storing it temporarily into the Pitòn database,

5.1. Package structure 35

in a table which will be deleted as soon as the job is done.
The Rules and RuleStats folders contain all the information about the rules. The
rules created by the learners are usually objects of the class ClassificationRule,
while the rules created by PRip learner are stored as RipperRule objects.
The DiscriminativeModels folder contains the class DiscriminativeModel and
it’s subclass RuleBasedModel, which is the representation of a rule-based model.
Each learner execution retrieves an object of RuleBasedModel, which contains an
array of rules (objects of the ClassificationRule class or its extensions) and an
array of associated attributes, so that it is possible to compare it to new instances
to predict their classification.
The Learners folder contains all the implementation of the various machine learn-
ing algorithms the package supports and scripts to eventually call external learn-
ers. At the moment of writing, PRip, an implementation of the RIPPERk algo-
rithm fully developed in PHP, is the only learner defined, while the other classes
SKlearnLearner and WittgensteinLearner are used to support Scikit-Learn and
wittengstein’s learners. In fact, their methods are used to pass an instances object
to the relative Python script through the Pitòn database, as well as all the even-
tual parameters for the learning process, and translate the information given by
the script into a common format, so that the rule-based models created and stored
by the package have all the same structure. Each PHP class which supports an
external learner has its own associated Python script, which will simply do some
simple dataset pre-processing to make it acceptable from the Python learner, and
execute them as seen in par. 4.2.3 and 4.3.2 with the parameters passed from the
PHP class.
The DBFit folder contains the DBFit class, that is, the main class of the package.
In fact, it implements the methods to read from a database as specified into the
problem configuration file, create the hierarchy of the problems, launching for each
problem the learner to create, if possible, a rule-based model, store information
into the database, and moreover the methods to make predictions.
The Console folder contains the definitions of all the package command line com-
mands. The UpdateModels command accepts as parameters a user id, a problem
name (the same name of the config file associated with the hierarchical problem,
without the extension), and a learner name (and its specific algorithm in case it
supports different implementations, such as Wittgenstein learner’s RIPPERk and

36 Chapter 5. Implementation

IREP). PredictByIdentifier asks for an instance id and make prediction about
its classification, using the last hierarchy of problems stored into the database
(while the predictByIdentifier function of the DBFit class asks for a specific hi-
erarchy id; in fact, in most web applications, the user would use this method, as
it retrieves the information in json format easily representable on a web page).
CreateExample is used to create a simple environment to try out the package, as
it will create an easy dataset, with only one possible classification problem, into
the user’s database, using the createIrisDataset.py script and the information
contained into the iris.csv file of the Examples folder.
Finally, the Facades folder contains the specification for the singleton classes, that
are, classes containing only static methods, such as Utils and Piton.
ClassModel.php, ModelVersion.php and Problem.php are the Laravel models
associated with the relative Pitòn tables into the Pitòn database, while Utils.php
contains generally useful PHP methods that can be used in any class and Piton.php
and PitonBaseServiceProvider.php contain the classes used to specify the pack-
age properties (such as commands, configuration files, etc.), as defaulted by Lar-
avel.

5.1.4 The tests folder

Finally, tests contains some unit tests used at the beginning of the development.
We used the Orchestra testing environment provided by Laravel for the develop-
ment of packages.
As a general overview, the folder contains a TestCase.php file to overwrite some
properties of the Orchestra TestCase class, for example to define a testing database
to be used during the unit tests. We then find two folders: Arff and Feature.
Feature contains various PHP files, each one of them used to group various unit
tests on similar features. For instance, SklearnLearnerTest.php will test the
creation of a model using decision trees. Arff contains some datasets stored in
files with .arff extension. Doing so, we separated the tests concerning the inter-
action with the database and the tests concerning learners. In fact, for example,
SklearnLearnerTest.php will not read from a database and then create a rule-
based model, instead it will read information from a .arff file such as Iris.arff,
which is ready to be used for learning.

5.2. Package database 37

5.2 Package database

The package stores information about the extracted rule-based models in its own
database. As we will see in par. 5.3.2, it is important to declare this new connec-
tion into the config/database.php file and to declare how to access this database
into the .env file as a second database. Note that the application database and
the package database can be the same, however it is not advised.
This way, the package will read the data needed for the extraction process from
the primary database (i.e. the application database) and store the extracted rule-
based models, as well as other useful information, such as information about the
hierarchy of problems and about the parameters of the execution, into a second
database.
At prediction time, the package will read the instance to be classified from the
main database based on a given id, while it will import the hierarchy of problems
and their respective rule-based models from the second database.
Figure 5.2 represents the structure of the package database.
The Problems table stores information about the problems solved by the package
so far and how the package read from the database to extract the rule-based mod-
els (i.e. on which tables, on which columns, which column provides the IDs for the
instances, and so on).
The Model version table stores information about a single execution of the package
learning process: for each execution, it stores the extracted hierarchy of problems,
who launched the execution, what learner has been used, as well as parameters
given to the execution.
Every instance of Problems can be associated with many instances of Model ver-
sion, as it is possible to have more executions for the same problem, for example
extracting a new hierarchy and updating the models when new data is provided.
Every instance of Model version is associated with only one problem.
The Class model table stores information about the extracted rule-based models,
such as its level in the hierarchy, and eventually its father node, the class attribute
used for the classification, the extracted rules and many test results. In fact, to
Test results* in the Class model table correspond many columns, each one rep-
resenting a test value on the built model. We will now discuss only the most
important among them.

38 Chapter 5. Implementation

We consider: True Positive (TP), instances correctly predicted to be true; False
Positive (FP), instances predicted to be true but which where, in fact, false; True
Negative (TN), instances correctly predicted to be false; False Negative (FN), in-
stances predicted to be false but which where, in fact, true.
Then we can calculate:

• Accuracy (ACC), which describes the accuracy of the model based on how
many instances have been correctly classified on the total of tried instances:

ACC =
TP + TN

TP + TN + FP + FN

• Sensitivity (TPR), which describes only the proportion of true values cor-
rectly classified:

TPR =
TP

TP + FN

• Specificity (TNR), which describes the proportion of false values correctly
classified:

TNR =
TN

TN + FP

• Precision or Positive Predictive Value (PPV), which measures the proportion
of instances correctly classified to be true in relation with all the instances
classified to be true:

PPC =
TP

TP + FP

• Negative Predictive Value (NPV), which measures the proportion of instances
correctly classified to be false in relation with all the instances classified to
be false:

NPV =
TN

TN + FN

Every instance of Model version is usually associated with many instances of Class
model, as every execution of the package is supposed to extract a hierarchy of sub-
problems and each one of them will be associated with a rule-based model.
Finally, the Rules table contains information about the rules, such as its an-
tecedents, its consequent, and various test results such as covered, support, con-
fidence, lift and conviction. Each instance of Class model can be associated with
many rules.

5.2. Package database 39

Problems
ID

Name
Input tables

Input columns
Output columns
Where clauses

Order by clauses
Limit

Identifier column name

Model version
ID

Problem ID
Author ID
Learner

Training mode
Cut off value

Experiment ID
Date

Hierarchy
Test results
Test date

Class model
ID

Model version ID
Recursion level
Father node

Class
Rules

Json logic rules
Attributes

Test results*
Test date

Additional infos

Rules
ID

Class model ID
Antecedents
Consequent

Covered
Support

Confidence
Lift

Conviction
Global covered
Global support

Global confidence
Global lift

Global conviction

Figure 5.2: Database structure

40 Chapter 5. Implementation

5.3 How to use the package

We will now discuss how to use the package in a general Laravel application, going
through its installation process, how to configure the Pitòn database in the project,
how to use the package to extract rule-based models and to make predictions and
which commands and files it needs in order to do so.

5.3.1 Install

The first thing to do to use the package is, of course, to install in within a Laravel
application. In order to do so, once a project has been created and configured as
seen in par. 4.1.2 and 4.1.3, the package must be declared into the composer.json
file. This way, every time the composer update command is launched, the package
will automatically be imported, or updated.
Specifically, one should add the GitHub project as a repository in composer.json
as follows:

1 "repositories": [
2 {
3 "type": "vcs",
4 "url": "https:// github.com/aclai -lab/

piton"
5 }
6]

And then add the package in the require section:

1 "require": {
2 "aclai/piton": "master"
3 }

And finally run in the terminal the composer update command.

5.3.2 Configuring the database

Once the package has been imported into a Laravel project, it is time to configure
the database it will use to store the rule-based models.

5.3. How to use the package 41

First, one should add a new connection in the connections array inside the
config/database.php file. This connection can be as follows:

1 'piton_connection ' => [
2 'driver ' => env('DB_CONNECTION_PITON '),
3 'host ' => env('DB_HOST_PITON ', '127.0.0.1'),
4 'port ' => env('DB_PORT_PITON ', '3306'),
5 'database ' => env('DB_DATABASE_PITON ', '

forge '),
6 'username ' => env('DB_USERNAME_PITON ', '

forge '),
7 'password ' => env('DB_PASSWORD_PITON ', ''),
8 'unix_socket ' => '',
9 'charset ' => 'utf8mb4',

10 'collation ' => 'utf8mb4_unicode_ci ',
11 'prefix ' => '',
12 'prefix_indexes ' => true,
13 'strict ' => true,
14 'engine ' => null,
15],

Then, one should add the following to the .env file of the project, to specify how to
access this database (in the same way as the main database connection is defined
for every Laravel project):

1 DB_CONNECTION_PITON=mysql
2 DB_HOST_PITON=127.0.0.1
3 DB_PORT_PITON=3306
4 DB_DATABASE_PITON=<your_piton_database >
5 DB_USERNAME_PITON=<your_mysql_username >
6 DB_PASSWORD_PITON=<your_mysql_password >

Where your_piton_database corresponds to the name of the database chosen to
host the rule-based models. After the database has been configured, it is finally
possible to launch the php artisan migrate command from the command line
to populate it with the tables seen in par. 5.2.

42 Chapter 5. Implementation

5.3.3 Training

Now that the package has been installed and the database has been configured, it
is possible to use the package to train new models. To do so, it is suggested to
publish the problem-config file via the following command:

php artisan vendor:publish --tag=problem-config
This will create a file in the config folder of the project named problem.php that
will be used to tell the package how to read from the main MySQL database to
create the rule-based models. This is done by filling the following property arrays:

• trainingMode specifies how to split data for training and test; if FullTraining
is specified, the package both trains and tests onto all the data, while if an
array of two floats between 0 and 1 is specified it will split the data between
train and test according to these two weights.

• cutOffValue specifies the minimum percentage of any of the two classes of
the classification that is needed for telling whether a dataset is too unbal-
anced; it is a value between 0 and 1.

• defaultOptions specifies additional options, such as the language of the
text used for pre-processing.

• inputTables specifies the tables containing the attributes needed for train-
ing and how to join them; for the first table, only the name is needed, while
the others can be specified with arrays of the form [tableName, joinClauses,
joinType], where joinClauses is a list of MySQL constraint strings.

• whereClauses specifies the SQL WHERE clauses for the concerning input
tables, for each recursion level.

• orderByClauses specifies the SQL ORDER BY clauses; differently from
whereClauses, they are fixed at all levels.

• identifierColumnName specifies which column will serve as an identifier for
sql-based prediction and for a correct retrieval step of prediction results.

• inputColumns species the columns which will serve as attributes for the rule-
extraction; each column is specified with an array of the form [columnName,

5.3. How to use the package 43

treatment, attrName] where columnName is the name of the column in
the database, treatment an optional parameter to specify a specific type of
treatment while transforming it into an attribute (i.e. if it must be divided
in more attributes), and attrName is the name of the resulting attribute.

• outputColumns specifies the columns to be treated as classification attributes
at each level; each column is specified with an array similar to the elements of
inputColumns, with the difference that each column can be also derived from
join operations and from tables that have not been specified in inputTables.

• globalNodeArray is used to tweak the order in which the problems are
discovered and solved.

For a better understanding, par. 6.2 and par. 7.3 will offer an example on how
to properly fill this file. It is advised, once the file has been filled, to rename it
after the problem to be solved (i.e. treatmentSuggestion.php), as it will be a
parameter of the command used to create rule-based models. This way, one can
have multiple files of this type and solve multiple problems just changing this pa-
rameter when launching the command. Once this file has been configured, one
needs to also publish the configuration file for the learner he would like to use.
In fact, every learner has its own configuration file, used to specify its training
parameters. However, this time a general configuration is also provided, so once
a learner configuration file has been published the learner is ready to go. It is
possible to publish them with one of the following commands:

php artisan vendor:publish --tag=prip-config
php artisan vendor:publish --tag=sklearn_cart-config
php artisan vendor:publish --tag=wittgenstein_irep-config
php artisan vendor:publish --tag=wittgenstein_ripperk-config

Now that all the configuration files have been set up, it is possible to run the
piton:update_models command, which will create the rule-based models. This
command accepts as parameters a problem name, that is the name previously
given to the problem.php configuration file, an author ID, to specify who actually
launched the command, the name of the learner to be used and, eventually, the
specific algorithm to be used for the training (i.e. in case of a Wittgenstein learner,
if it would use the IREP or the RIPPERk algorithm).

44 Chapter 5. Implementation

For example, let’s suppose we want to solve the problem of the classification of
flowers belonging to the iridaceae family discussed in par. 3.1 using the IREP
algorithm implemented by the Wittgenstein package. The first thing to do is to
publish the problem.php configuration file, fill it and renaming it, for example, as
iris.php. Then, we must publish the configuration file required by the algorithm,
that is wittgenstein_irep-config.php, and leave it as it is. Finally, we launch
the following command:

php artisan piton:update_models iris 0 wittgenstein_learner IREP

5.3.4 Prediction

Once the rule-based models have been extracted, it is possible to use them to make
predictions about new instances. This can be done in two ways.

• The first one is to use the php artisan piton:predict_by:identifier
command. Once the command has been launched, it will ask for an instance
id, and it will make a prediction about the classification of this instance
based on the most recent rule-based models created for that problem.
Suppose, for example, that we launched the models extraction for the iris
problem on 1000 instances, and then added 50 more instances of flowers into
the database and want to know the genre and family of the flower of id 1020.
We would launch the command and give 1020 as instance id.

• However, the package is expected to be used more often into a web applica-
tion rather than via the command line, so the most common way to ask for a
prediction will be using the predictByIdentifier() function of the DBFit
class. This function accepts as parameters an instance id, an array (which
is used by the function implementation, but should always be an empty ar-
ray), an instance of model version id, to specify which rule-based models to
use (i.e. associated with which execution), and return the prediction in json
format, so that it can easily be displayed on the page (even using AJAX).
For example, consider the iris problem, if we want to use the rule-based mod-
els created within the last execution and predict on the instance of id 1020,
we would specify the following in the code of our page.

5.3. How to use the package 45

$lastMV = ModelVersion : : orderByDesc (' id ')−> f i r s t () ;
$db f i t = new DBFit () ;
$p r ed i c t i on = $dbf i t−>p r e d i c tBy I d e n t i f i e r (1020 ,

[] , $lastMV [' id]) ;

Note that this can be useful especially when a new instance has just been
inserted into the database, as it is possible to specify to use its id for the
prediction and know its classification straight away.

46 Chapter 5. Implementation

Chapter 6

An example use case: automatic

advertisement

The purpose of this chapter is to introduce an interesting and realistic possible
application of the package, with the meaning of showing all of its key features.
We will first discuss the problem, how we have decided to solve it, the comparison
between this solution and the structures we have seen in the third chapter, and
finally how to actually apply the package, introducing a possible configuration
file for reading from the database and create the hierarchy which will host the
rule-based models to solve out the problem.

6.1 The problem explained

The problem consists of an automatic advertisement for an e-commerce of second-
hand vehicles. That is, a service common among social networks which based on
the user information (such as age, interests, activities, and so on), with the user’s
consent, improves the suggestion of advertisements. In our case, we specify on
the advertisements of an affiliated site which sells second-hand vehicles, first and
foremost deciding if the user would be interested in the purchase of a second-hand

48 Chapter 6. An example use case: automatic advertisement

vehicle in this precise moment, then eventually deciding which type of vehicle the
user could be more interested in, and finally choosing the specific advertisement to
be shown. So, a possible hierarchy which we can choose to structure the problem
could be Figure 6.1 (we denote each single ad with the code ‘ad###’).

Suggest an advertisement? (Yes/No)

Car

ad183 . . . ad274

Van

ad284 . . . ad485

Motorcycle

ad572 . . . ad589

Moped

ad892 . . . ad928

Figure 6.1: Possible hierarchy to solve the automatic advertisement problem

Of course, the number of searches for each single user would be too little. Fur-
thermore, we would like the suggestion to also have effect to users that have not
showed interest in buying a vehicle yet. To do this, we categorize the users of the
social network in sets of users with the same characteristics, and associate a user
category to each user and to each search. This way, the suggestion will be based
on the searches of users with similar characteristics. Let’s suppose the tables of
Figure 6.2 to be a sub-part of a possible social network database.

Users
ID

Birth
Social status
Has children

Job
Interests

. . .
User category ID

User category
ID
Age

Social status
Has children

Job
. . .

Advertisements
ID

Name
Vehicle type

Vehicle model
Kilometers

Year
Smoker driver

. . .

Searches
ID

User category ID
Advertisement ID

Date
. . .

Figure 6.2: Part of the social network database

6.2. How to effectively use the package to solve the problem 49

6.2 How to effectively use the package to solve the
problem

Let’s consider a Laravel project associated with a social network and with a
database containing the tables illustrated in Figure 6.2. The package has been
added to the composer.json file as seen in par. 5.3.1, the connection for the
package database has been added to the config/database.php file and the access
parameters to access it to the .env file as shown in par. 5.3.2. Finally, the problem
configuration file has been published in config/problem.php as seen in par. 5.3.3
and has been manually renamed into automaticAdvertisement.php.
Let’s discuss a possible configuration to solve the automatic advertisement prob-
lem. First of all, one should specify how to join the various tables to obtain a
single table (or a dataset) where every instance corresponds to a single research,
but with attributes from all the other tables. It is important to remember that
the extraction happens on the user categories rather than the singles users, so the
Users table is not needed in this stage, and the association of a user to a user
category should be managed outside of the package by the specific application. By
definition, each instance of the Searches table is associated with exactly one in-
stance of the User category table, while many different searches can be associated
with each user category, and all the needed information about the input attributes
is contained in these tables. So one possible configuration for the inputTables
array could be the following (comprising only one left join):

' inputTables ' => [
" s ea r che s " ,
[

" user_category " ,
" user_category . id = sea r che s . user_category_id " ,
"LEFT JOIN"

]
] ,

Then, the whereClauses array is used to specify some structural constraints. For
example, in this case, one should think about removing from the classification
users younger than 14 years old (considering also mopeds) as younger users won’t

50 Chapter 6. An example use case: automatic advertisement

be actually interested in the purchase of a vehicle, and at training not to con-
sider searches that are too old (i.e. removing searches previous to 2020). So the
whereClauses array could be filled as follows:

' whereClauses ' => [
' d e f au l t ' => [

/∗ S t r u c t u r a l c on s t r a i n t s ∗/
" user_category . age > '13 ' " ,

] ,
' on lyTra in ing ' => [

" s ea r che s . date > '2020−01−01 '" ,
]

] ,

Then, it is possible to specify how to order the instances, for example by the date
of the search, using the orderByClauses array:

' orderByClauses ' => [
[

" s ea r che s . date " ,
"ASC"

]
] ,

And which column serves as a global identifier for the instances, using the
identifierColumnName array:

' identi f ierColumnName ' => " sea r che s . id " ,

At this point, one must specify which columns of the specified tables are to be
used for the rule-extraction, and how to treat them. The following syntax is
used: "0+..." implies that the column will be treated as a continuous attribute,
"CONCAT('',...)" implies that the column will be treated as a discrete attribute;
furthermore, the second parameter for each column can be used to specify a certain
treatment method, such as forceCategoricalBinary for discrete attributes, that will
convert the column in many binary categorical attributes, one for each possible
value in its domain. This is specified using the inputColumns array.

6.2. How to effectively use the package to solve the problem 51

' inputColumns ' => [
/∗ Age ∗/
[

"0+user_category . age" ,
NULL,
"age"

] ,
/∗ Soc i a l s t a t u s ∗/
[

"CONCAT(' ' , user_category . s o c i a l_s t a tu s) " ,
" ForceCategor i ca l " ,
" gender ""

] ,
/∗ Has ch i l d r en ∗/
[

"CONCAT(' ' , user_category . has_chi ldren) " ,
" ForceCategor i ca l " ,
" has_chi ldren "

] ,
/∗ Job ∗/
[

"CONCAT(' ' , user_category . job) " ,
" ForceCategor i ca l " ,
" job "

] ,
. . .

] ,

Lastly, one should, of course, specify on which attributes the classification should
happen. This is done using the outputColumns array (eventually, if new joins are
needed to add these attributes, they can be done here).

52 Chapter 6. An example use case: automatic advertisement

' outputColumns ' => [
[

" adver t i s ements . veh ic le_type " ,
[

[
" adver t i s ements " ,
[

" s ea r che s . advert isement_id = adver t i s ements . id " ,
] ,
"LEFT JOIN"

]
] ,
" ForceCategor i ca lB inary " ,
"VehicleType"

] ,
[

" adver t i s ements . name" ,
[

[
" adver t i s ements " ,
[

" s ea r che s . advert isement_id = adver t i s ements . id " ,
] ,
"LEFT JOIN"

] ,
] ,
" ForceCategor i ca lB inary " ,
"Advertisement "

]
] ,

After filling the arrays in the problem configuration file, it is possible to publish
a learner configuration file and to launch the rule-extraction as discussed in par.
5.3.3.

Chapter 7

A real application: automated

treatment suggestion

It is finally time to introduce the environment that gave birth to the package.
That is, the second version of the physicians’ platform of the Research Center
for the Study of Menopause and Osteoporosis within the University of Ferrara
(Italy), abbreviated into CMO. This platform served primarly as a way to access
the patients’ database, offering tools to insert or retrieve patients and reports,
densitometries, therapies, and so on. Furthermore, it offered the physicians an
interesting tool for treatment suggestion, which based on the therapies given by
the physicians in the past allowed the physician to receive suggestions for the pre-
vention and treatment of osteoporosis within patients with similar characteristics
and symptoms.
The new version of the platform was entirely developed using the Laravel frame-
work during the last year. However, the idea came to mind to separate the machine
learning logic from the project, which at the time only consisted of one implemen-
tation of the RIPPERk algorithm, so that it would be easier to scale and, more
importantly, to use it in a completely different environment. In fact, the package
finds a great fit in the CMO project serving as a clinical decision support system,

54 Chapter 7. A real application: automated treatment suggestion

especially given the structure of the problem: that is, a two levels hierarchy, the
first concerning the treatment type, the second concerning the specific active prin-
ciple to be used.
A lot has changed from its first version, starting from the support for Scikit-Learn
and Wittgenstein Python packages, which give the physician the possibility to
switch between models based on accuracies, or to confront the results of more
models for the same patient before taking a decision for a specific therapy. More-
over, while its first version only supported one problem at a time, the package now
gives support to more indipendent hierarchical problems at a time.

7.1 What is the CMO

The Center for the Research and for the Study of Menopause and Osteoporosis, or
CMO, is an interdepartmental center of the University of Studies of Ferrara which
availing of multidisciplinary clinical skills such as gynecology, ortophedy, radiol-
ogy, intertistic and biochemic studies all the thematic concerning menopause and
menopausal and senile osteoporosis. It represents an autonomous scientific arti-
colation among all of its composing structures: the Department for Translational
Medicine and for Romagna and the Department of Neuroscience and Rehabilita-
tion. Its actual headquarters can be found at the woman health center of Ferrara’s
AUSL, convention for the women health in menopausal age subscribed among
the University for the Studies of Ferrara, the AUSL of Ferrara and the Hospital
Agency.
Osteoporosis is a skeletal system disease mainly categorized by alterations in bone
mass density and its structure, that makes the bone prone to fracture, and which
has proven to be strongly correlated with women menopausal state.

7.2 The problem: treatment suggestion for osteo-
porosis

Given information about the patient, such as its anamnesis, its menopausal state,
its densitometry, we would like to predict which therapies and respective active
principles the physician could suggest the patient.

7.2. The problem: treatment suggestion for osteoporosis 55

This can easily be seen as a hierarchy of problems consisting of two levels: the first
concerning the type of the suggested therapy, the second concerning which active
principle to suggest. The possible therapies and respective active principles are
summarized by Table 7.1.

Name Therapy type Active principles Abbreviation

Thorm

Hormonal
Therapy

MHT (tibolone) tib

MHT (oral) oral

MHT transdermal trans

MHT (TSEC) tsec

Tosteop

Osteoprotective
Therapy

Alendronate ale

Alendronate + vit D ale+ vD

Risendronate ris

Ibandronate iba

Clodronate clo

Raloxifene ral

Bazedoxifene baz

Denomasub den

Teriparatide ter

Zoledronate zol

TvitDth

Vitamin D
Therapy

Colecalciferol colec

Calcifediol calci

SvitDsup

Vitamin D
Supplementation

Colecalciferol colec

Calcifediol calci

Scalsup

Calcium
Supplementation

Carbonated calcium carb

Citrated calcium citr

Table 7.1: Possible therapies and respective active principles.

Meanwhile, the hierarchy can be visualized as represented in Figure 7.1 (each
sub-problem of the first level has been separated for a cleaner visualization).

56 Chapter 7. A real application: automated treatment suggestion

Treatment Suggestion

Thorm

. . .

Tosteop

. . .

TvitDth

. . .

SvitDsup

. . .

Scalsup

. . .

Thorm

tib oral trans tsec

TvitDth

colec calci

SvitDsup

colec calci

Scalsup

carb citr

Tosteop

ale ale+ vD ris iba clo ral baz den ter zol

Figure 7.1: Possible hierarchy to solve the treatment suggestion problem

The application is associated with a MySQL database, containing a great amount
of data about the patients served to this moment and the given therapies.
Specifically, we consider the attributes of the tables represented in Figure 7.2, with
the following considerations:

• each report is associated with one patient, and each diagnosis, anamnesis,
densitometry, treatment suggestion and active principle are associated with
one report;

• despite many reports could be associated with one patient, at the moment of
writing the platform considers each served patient as a new patient, so only
one report is associated with each patient, as well as each report is associated
with only one diagnosis, one anamnesis and one densitometry;

• many treatment suggestions and active principles can be associated with
one report, while each unitary treatment suggestion is associated with one
treatment suggestion and one active principle, and viceversa.

7.2. The problem: treatment suggestion for osteoporosis 57

Reports
ID

Date
Patient ID

Patients
ID

Birth
Sex

Diagnosis
FRAX
DeFRA

Severe osteoporosis
Femur status
Spine status
Report ID

Anamnesis
BMI

Menopause state
Age at last menopause

Therapy status
Vertebral fractures
Femoral fractures
Other fractures
Smoking habits
Alcohol intake

Cortisone
Current illnesses
Secondary causes

Clinical information
Previous spine T-score
Previous spine Z-score
Previous neck T-score
Previous neck Z-score

Report ID

Densitometries
Spine T-score
Spine Z-score

Neck left T-score
Neck right T-score
Neck left Z-score

Neck right Z-score
Report ID

Treatment suggestions
ID

Therapy type
Report ID

Active principles
ID

Name
Report ID

Unitary treatment suggestions
ID

Therapy suggestion ID
Active principle ID

Figure 7.2: Sub-set of tables of the CMO database.

58 Chapter 7. A real application: automated treatment suggestion

7.3 How to use the package to solve the problem

We will now propose a configuration for the problem.php file, which in this appli-
cation we have renamed treatmentSuggestion, to solve the problem.
First, we notice that we have to join the reports, the patients, the anamnesis, the
diagnosis and the densitometries tables. To do so, we notice that the anamnesis,
the diagnosis and the densitometries tables have a column Report ID, while the
reports’ table has a column Patient ID.
So we can fill the inputTables array as follows:

' inputTables ' => [
" r epo r t s " ,
[

" pa t i e n t s " ,
" pa t i e n t s . id = r epo r t s . pat ient_id " ,
"LEFT JOIN"

] ,
[

" anamnesis " ,
" anamnesis . report_id = repo r t s . id " ,
"LEFT JOIN"

] ,
[

" d i a gno s i s " ,
" d i a gno s i s . report_id = repo r t s . id " ,
"LEFT JOIN"

] ,
[

" d en s i t ome t r i e s " ,
" d en s i t ome t r i e s . report_id = repo r t s . id " ,
"LEFT JOIN"

]
] ,

Then, we could specify some structural constraints. To do so, we must fill the

7.3. How to use the package to solve the problem 59

whereClauses array. Specifically, we can be interested only in reports which have
been stored after 2018-09-01, and being the research about the connection between
menopause and osteoporosis, we are interested only in female patients, and among
them we need information about their menopause state and their body mass index
value (so they cannot be null nor -1). Then, we could be more interested in the
age of the patient at the time of the visit rather than its date of birth. Finally, at
training time (but not at prediction time) the output values, and so the treatment
type and the active principle, for one instance cannot be null, and should have
been suggested at least one time.
So the whereClauses array could be filled as follows:

' whereClauses ' => [
' d e f au l t ' => [

/∗ S t r u c t u r a l c on s t r a i n t s ∗/
" r epo r t s . date > '2018−09−01 '" ,
" pa t i e n t s . sex = 'F ' " ,
" ! ISNULL(anamnesis . menopause_state) " ,
"DATEDIFF(r epo r t s . date , pa t i e n t s . date_of_birth)

/ 365 >= 40" ,
/∗ Cons t ra in t s f o r manual c l e an ing ∗/
"anamnesis . bmi i s NOT NULL" ,
"anamnesis . bmi != −1" ,

] ,
' on lyTra in ing ' => [

[
" r epo r t s . id " ,
"NOT IN" ,
[

" reuse_current_query " ,
1 ,
[

" ! ISNULL(treatment_suggest ions . type) " ,
"ISNULL(a c t i v e_p r i n c i p l e s . name) "

]

60 Chapter 7. A real application: automated treatment suggestion

]
] ,
[

" r epo r t s . id " ,
"NOT IN" ,
[

" reuse_current_query " ,
1 ,
[] ,
[

"GROUP BY" => [
" treatment_suggest ions . type" ,
" a c t i v e_p r i n c i p l e s . name" ,
" r epo r t s . id "

] ,
"HAVING" => "COUNT(∗) > 1"

]
]

]
]

] ,

Then, we can specify how to order the instances, for example by the date of the
report:

' orderByClauses ' => [
[

" r epo r t s . date " ,
"ASC"

]
] ,

And which column serves as a global identifier for the instances:

' identi f ierColumnName ' => " r epo r t s . id " ,

7.3. How to use the package to solve the problem 61

Then we need to specify which columns of these tables are to be used for the
rule-extraction. We will write just few of them, to make some examples.
Note that with the syntax "0+..." we declare that column should be treated as a
numerical attribute, with "CONCAT(”,...)" we declare that it should be treated
as a categorical attribute using, eventually, the second parameter for each column
to specify how to treat this attribute (i.e. ForceCategoricalBinary force the split
of the attribute in many binary categorical attributes).
We can also specify other information, such as how to deal with null values or to
create new attributes, making use of the MySQL syntax. The third parameter is
simply the new name we give to the attribute (i.e. we have the date of birth in
the database, but not an age attribute, so we create it and give it the name age).

' inputColumns ' => [
/∗ Age ∗/
[

"0+DATEDIFF(r epo r t s . date , p a t i en t s . date_of_birth)
/ 365" ,

NULL,
"age"

] ,
/∗ Body Mass Index ∗/
[

"0+IF (ISNULL(anamnesis . bmi) OR anamnesis . bmi =
−1, NULL, anamnesis . bmi) " ,

NULL,
"body mass index "

] ,
/∗ Gender ∗/
[

"CONCAT(' ' , p a t i en t s . sex) " ,
" ForceCategor i ca l " ,
" gender "

] ,

62 Chapter 7. A real application: automated treatment suggestion

/∗ Menopause S ta t e ∗/
[

"CONCAT(' ' , anamnesis . menopause_state) " ,
" ForceCategor i ca l " ,
"menopause s t a t e "

] ,
/∗ Age at l a s t menopause ∗/

[
"0+anamnesi . eta_menopausa" ,
NULL,
"age at l a s t menopause"

] ,
. . .

] ,

Finally, we specify which columns contain information about the classification,
using the outputColumns array. In this case, we have two levels: one for the type
of the therapy and one for the active principle.

' outputColumns ' => [
[

" treatment_suggest ions . type" ,
[

[
" treatment_suggest ions " ,
[

" treatment_suggest ions . report_id =
report_id " ,

" treatment_suggest ions . type !=
' In−depth i n v e s t i g a t i o n ' "

] ,
"LEFT JOIN"

]
] ,

7.3. How to use the package to solve the problem 63

" ForceCategor i ca lB inary " ,
"Therapy"

] ,
[

" a c t i v e_p r i n c i p l e s . name" ,
[

[
" treatment_suggest ions " ,
[

" treatment_suggest ions . id =
unitary_treatment_suggest ions . treatment_suggest ion_id "

] ,
"LEFT JOIN"

] ,
[

" a c t i v e_p r i n c i p l e s " ,
[

" unitary_treatment_suggest ions . a c t i v e_pr inc ip l e_ id =
ac t i v e_pr i n c i p l e . id "

] ,
"LEFT JOIN"

]
] ,
" ForceCategor i ca lB inary " ,
" Pr in c ip i oAt t i vo "

]
] ,

Now, it is possible to extract rule-based model as seen in par. 5.3.3.
Specifically, these models are updated offline once a week, so that they can improve
over time thanks to the greater amount of data.
The prediction feature is implemented as a button in the page where the physi-
cian fills the report for a specific patient, and it appears after all the data about
anamnesis, densitometries and diagnosis has been inserted. Compiling the report,

64 Chapter 7. A real application: automated treatment suggestion

a new instance in the Reports table is inserted into the database, and the informa-
tion about its id is kept while filling the form, and clicking the Suggest a Therapy
button it is passed to the function dbfit()->predictByIdentifier() as a pa-
rameter. This function will then return the prediction about this instance in json
form, which will be displayed to the physician, to help him to find a treatment for
the patient. It is important to remember that the models don’t suggest a therapy
to a patient. Instead, they are meant to help the physician to find a therapy for
the patient. The physician has always the final word.

7.4 Experiment

To estimate the effectiveness of the application of the package to the CMO system,
a complete experiment has been executed, considering the recommendations that
have been given from Sept. the 1st, 2018 to Aug. the 31th, 2020. During this
period, 2052 postmenopausal women over 40 years of age underwent a DXA (Dual-
energy X-ray absorptiometry, which data is stored in the Densitometries table of
Figure 7.2) examination at CMO. Of these, 18 patients returned more than once;
our original data set, then, is composed by 2070 reports. Out of these reports, 16
presented a null BMI, 4 of them presented a recommendation of some type without
drug or supplement specification, and 2 of them presented the same recommenda-
tion more than once (with the same drug or supplementation) because of human
error during data insertion; these have been filtered out, leaving us with 2048 in-
stances. Observe that at the first level, it holds that each instance is a record; at
the second level, however, after selecting only those reports in which a particu-
lar recommendation type has been given, more than one recommendation for the
same patient may have been selected, and therefore it holds that each instance
is a recommendation. Furthermore, there are several instances in which FRAX
and/or DeFRA was less than 0.1 or more than 50 (for DeFRA only): these values
have been replaced by 0 and 50, respectively. An important observation at this
point is that the single instance does not always end in a therapy recommendation,
but it may also end in a recommendation of further exams and investigations; in
this experiment, such cases have been computed as negative cases for therapy rec-
ommendation, causing some imbalance between osteoporosis/severe osteoporosis
cases and effectively recommended therapies.

7.4. Experiment 65

In this experiment we fixed cutOffValue = 10%; thus, only three data set have
been considered for classifier extraction at the first level, namely Dosteop, DvitDsup,
and Dcalsup. Under the same parameter, at the second level the following data
set have been considered: Dale

osteop, Dden
osteop, Dris

osteop, Dcolec
vitDsup, Dcalci

vitDsup, Dcarb
calsup, and

Dcitr
calsup.

After running the entire system, having fixed trainingMode = [0.8, 0.2] (so that
the 20% stratified most recent records of each data set are used for testing pur-
poses) the results are as in Tables 7.2 and 7.3. For each problem and its corre-
sponding test, we reported the following values (most of them already discussed
in par. 5.2): accuracy, that is, the rate of corrected classification, sensitivity, that
is, the rate of true positives, specificity, that is, the rate of true negatives, positive
predicted value, that is, the inverse of the false discovery rate, the negative pre-
dicted value, that is, the inverse of the false omission rate, and the F1 score, that
is, the harmonic mean of sensitivity and positive predicted value
Let us focus, first, on the behaviour of Γosteop. Out of 2048 instances, in 447 a
osteoprotective therapy has been prescribed; our system is able to correctly pre-
dict if that is the case for a new instance in the 86% of the cases. If, in fact, an
osteoprotective therapy should be recommended, the system returns the correct
suggestion in the 55% of the cases, while if the therapy should not be recom-
mended, the system gives a correct prediction in the 95% of the cases. In the case
of predicting if a patient needs calcium supplementation (580 positive instances),
our system gives a correct prediction in the 83% of the cases, which drops to 47%
in the positive cases and raises to the 97% in the negative ones. Finally, in the case
of supplementation of vitamin D (1125 positive cases), the rate of overall correct
prediction is 75%, which is 74% and 76% in the positive and the negative cases,
respectively. As it turns out, predicting the correct drug or supplement is quite
more difficult at least in some cases, because the data set are still unbalanced even
after our initial screening. Yet, in at least three cases (predicting a recommen-
dation of risedronate, calcifediol, and colecalciferol), the accuracy is still between
83% and 93%.
Local evaluation is shown in Tables 7.4 and 7.5, where we have displayed, for each
type, the number of rules of each classifier, and their distribution among the fol-
lowing four types (calculated on support, that is, the ratio of cases in which both
the antecedent and the consequent of the rule are verified over the total number of

66 Chapter 7. A real application: automated treatment suggestion

cases, and confidence, that is, the ratio of the cases in which only the antecedent
is verified over the cases in which both the antecedent and the consequent are
verified):

• (I) relevant and reliable, showing support > 0.2 and confidence > 0.7;

• (II) relevant, but unreliable, showing support > 0.2 but confidence ≤ 0.7;

• (III) irrelevant, but reliable, showing support ≤ 0.2 but confidence > 0.7;

• (IV) irrelevant and unreliable, showing support ≤ 0.2 and confidence ≤ 0.7.

Among these, types I and III (which include only reliable rules) are the most
common ones, indicating that our approach is relatively stable.
These results have also been integrated into a scientific paper, named Predicting
Therapy Recommendations in Postmenopausal Osteoporosis [13].

Classifier Accuracy F1 Sensitivity Specificity PPV NPV
Γosteop 0.86 0.63 0.55 0.95 0.74 0.88
ΓvitDsup 0.75 0.76 0.74 0.76 0.79 0.71
Γcalsup 0.83 0.61 0.47 0.97 0.85 0.82

Table 7.2: Results of the experiment: global evaluation of first level classifiers.

Classifier Accuracy F1 Sensitivity Specificity PPV NPV
Γale
osteop 0.72 0.39 0.27 0.95 0.73 0.72

Γden
osteop 0.71 0.35 0.25 0.92 0.58 0.73

Γris
osteop 0.83 0.12 0.10 0.92 0.14 0.89

Γcalci
vitDsup 0.93 0.65 0.54 0.98 0.83 0.94

Γcolec
vitDsup 0.92 0.96 0.98 0.54 0.94 0.79
Γcitr
calsup 0.62 0.52 0.46 0.75 0.60 0.63

Γcarb
calsup 0.62 0.68 0.75 0.46 0.63 0.60

Table 7.3: Results of the experiment: global evaluation of second level classifiers.

7.4. Experiment 67

Classifier # #I #II #III #IV
Γosteop 6 1 0 5 0
ΓvitDsup 6 2 2 2 0
Γcalsup 4 1 0 2 1

Table 7.4: Results of the experiment: local evaluation of first level classifiers.

Classifier # #I #II #III #IV
Γale
osteop 2 0 2 0 0

Γden
osteop 4 0 1 1 2

Γris
osteop 2 1 0 0 1

Γcalci
vitDsup 5 1 0 2 2

Γcolec
vitDsup 5 1 0 2 2
Γcitr
calsup 3 0 2 1 0

Γcarb
calsup 3 0 2 1 0

Table 7.5: Results of the experiment: local evaluation of second level classifiers.

68 Chapter 7. A real application: automated treatment suggestion

Chapter 8

Conclusions

This thesis discussed the implementation of a Laravel package for the system-
atic construction of symbolic intelligent systems for solving hierarchically-arranged
problems through the creation of rule-based models using data stored in a MySQL
database.
The package is open-source, and it is currently used by the CMO of Ferrara as a
clinical decision support system to suggest therapies for the cure of osteoporosis
to the physicians.
However, the package is certainly not flawless, and there may be many potential
improvements. As an example, at the moment of writing all the attributes used
for training the models are associated to the extracted rule-based model, and to
make predictions about a new instance it must have at least the same attributes
as the ones associated to the rule-based model. To improve this, the package could
save only the attributes used by its rules, and, as a further improvement, it could
associate them to each single rule rather than to the entire model. This way the
models would be more flexible and predict on much more instances.
Then, at the moment of writing, all the main features of the package (that are,
reading from the database and creating the hierarchies, fitting the rule-based mod-
els and making predictions on new instances) are comprised only in one class, that

70 Chapter 8. Conclusions

is DBFit. This class could therefore be divided into three lighter classes, each
one containing the logic for one of these functionalities: one for reading from the
MySQL database and instancing the hierarchy of problems, one dedicated to the
fitting of the rule-based models, and the last one comprising the logic to make
prediction on new instances.
Finally, the package could be scaled to support even more learners, both from
Scikit-Learn and brand new, to be used in a grater range of different applications.
In this internship, I have developed my skill set and gained valuable applied expe-
rience. I have broadened my knowledge about machine learning and interpretable
AI, as well as many areas such as package development, Laravel, python, sci-kit
learn, Wittgenstein and pandas libraries, version control, regular expressions, de-
cision trees and rule-based classification.
I believe this internship had a significant impact on my professional development
and heightened my interest the fields of machine learning and explainable AI,
especially applied to the biomedical field.

Bibliography

[1] Iridaceae - The plant list:
http://www.theplantlist.org/browse/A/Iridaceae/

[2] Iris - The plant list:
http://www.theplantlist.org/browse/A/Iridaceae/Iris/

[3] 14 Different Types of Learning in Machine Learning:
https://machinelearningmastery.com/types-of-learning-in-machine-learning/

[4] W.W. Cohen. Fast effective rule induction. In Proc. of the 20th International
Conference on Machine Learning, pages 115–123. 1995.

[5] Breiman L (1984) Classification and regression trees. The Wadsworth and
Brooks-Cole statisticsprobability series. Chapman & Hall.

[6] Laravel - The PHP Framework For Web Artisans:
https://laravel.com/

[7] Installation - Laravel - The PHP Framework For Web Artisans:
https://laravel.com/docs/8.x

[8] Scikit-Learn: machine learning in python:
https://scikit-learn.org/stable/

71

http://www.theplantlist.org/browse/A/Iridaceae/
http://www.theplantlist.org/browse/A/Iridaceae/Iris/
https://machinelearningmastery.com/types-of-learning-in-machine-learning/
https://laravel.com/
https://laravel.com/docs/8.x
https://scikit-learn.org/stable/

72 Bibliography

[9] GitHub - scikit-learn/scikit-learn: machine learning in python:
https://github.com/scikit-learn/scikit-learn

[10] Getting Started - Scikit-Learn 1.0 documentation:
https://scikit-learn.org/stable/getting_started.html

[11] 1.10. Decision Trees - Scikit-Learn 1.0 documentation:
https://scikit-learn.org/stable/modules/tree.html

[12] Wittgenstein - PyPI:
https://pypi.org/project/wittgenstein/

[13] G. Bonaccorsi, M. Giganti, M. Nitsenko, G. Pagliarini, G. Piva, and G. Sciav-
icco. Predicting Therapy Recommendations in Postmenopausal Osteoporosis,
pages 15-21. 2020.

https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/stable/getting_started.html
https://scikit-learn.org/stable/modules/tree.html
https://pypi.org/project/wittgenstein/

	Introduction
	Acknowledgements
	Preliminaries
	Hierarchical problems
	Learners
	Rules
	Rule-based models
	Rule-extraction
	RIPPERk
	CART

	Technologies
	Laravel
	What is Laravel
	Creating a Laravel project
	Project configuration
	Laravel popular use cases

	Scikit-Learn
	What is Scikit-Learn
	How to use Scikit-Learn
	Classification using Scikit-Learn decision trees
	A little digression on decision trees learning

	Wittgenstein
	What is Wittgenstein
	Classification using Wittgenstein rule-based models

	Implementation
	Package structure
	The config folder
	The database folder
	The src folder
	The tests folder

	Package database
	How to use the package
	Install
	Configuring the database
	Training
	Prediction

	An example use case: automatic advertisement
	The problem explained
	How to effectively use the package to solve the problem

	A real application: automated treatment suggestion
	What is the CMO
	The problem: treatment suggestion for osteoporosis
	How to use the package to solve the problem
	Experiment

	Conclusions

