
Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

A Laravel package for systematic
construction of symbolic intelligent systems

Alberto Paparella

Universitá degli Studi di Ferrara
Dipartimento di Matematica e Informatica

Relatore
Prof. Guido Sciavicco

Correlatori
Dott. Giovanni Pagliarini
Prof. Giacomo Piva

4 ottobre 2021

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Contents

1 Introduction
Pitón

2 Preliminaries
Hierarchical problems
Rule-based models
Rule-extraction

3 How to use the package
Install
Workflow

Configuring the database
Training
Prediction

4 Automated treatment
suggestion

Problem
Database
Experiment results

5 Backup slides

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Pitón

Pitón

Pitón
Pitón is a Laravel package which offers machine learning
utilities for solving hierarchically-arranged problems, where
the available data is stored in a MySQL database, through the
creation of rule-based models.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Pitón

Setting

The package can be placed in the supervised learning area of
machine learning. The target of the package is learning from a
dataset (e.g. a set of data representable in tabular form), making use
of an algorithm we refer to as learner, which synthesize a model that
can be used to classify new instances.

Specifically, an algorithm divides the dataset into a training set and a
test set, and it fits a model based on input and output values (e.g.
features values and respective classification label in the train set);
then, it tests the extracted model using only the input values of the
test set and comparing the results to their original classification.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

Hierarchical problems

Iridaceae

Crocosmia

.

Ferraria

.

Iris

Setosa Versicolor Virginica

Moraea

.

Tigridia

.

Figure: Hierarchy of problems for Iridaceae classification

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

Rule-based models

Γ =


p1

1 ∧ ... ∧ p1
n → C1 else

p2
1 ∧ ... ∧ p2

n → C2 else
...

pn
1 ∧ ... ∧ pn

n → Cn

Figure: Example of a generic rule-based model

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

Binary rule-based models

Γ =



p1
1 ∧ ... ∧ p1

n → C else
p2

1 ∧ ... ∧ p2
n → C else

...

pn
1 ∧ ... ∧ pn

n → C else
¬C

Figure: Example of a generic binary rule-based model

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

Binary classification

Γ =



p1
1 ∧ ... ∧ p1

n → C else
p2

1 ∧ ... ∧ p2
n → C else

...

pn
1 ∧ ... ∧ pn

n → C else
¬C

Figure: Example of a generic binary rule-based model

Classification with binary rule-based models:
1 try the first rule, if it activates predict C, if not try the following rule, and

so on;
2 if all rules fail, then predict ¬C, such as the instance is not of class C.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

Binary classification

Γ =



p1
1 ∧ ... ∧ p1

n → C else
p2

1 ∧ ... ∧ p2
n → C else

...

pn
1 ∧ ... ∧ pn

n → C else
¬C

Figure: Example of a generic binary rule-based model

Classification with binary rule-based models:
1 try the first rule, if it activates predict C, if not try the following rule, and

so on;
2 if all rules fail, then predict ¬C, such as the instance is not of class C.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

RIPPERk

To build a rule:
1 Randomly partition all the examples which have not been covered by

any rule yet into two subsets: a growing set and a pruning set.
2 Grow a rule by greedily adding conditions until the rule reaches a

confidence of 100% using only the growing set.
3 To prevent growing set overfitting, immediately prune the rule, deleting

some conditions based on a pruning criterion, using the pruning data.
4 Lastly, all the positive and negative examples covered by the rule must

be removed; then repeat from the step 1.
5 RIPPERk stops adding rules when there are no more positive examples

left or when a rule has an unacceptably large error rate, or when the
last rule added is too complicated according to some criterion.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

RIPPERk

To build a rule:
1 Randomly partition all the examples which have not been covered by

any rule yet into two subsets: a growing set and a pruning set.
2 Grow a rule by greedily adding conditions until the rule reaches a

confidence of 100% using only the growing set.
3 To prevent growing set overfitting, immediately prune the rule, deleting

some conditions based on a pruning criterion, using the pruning data.
4 Lastly, all the positive and negative examples covered by the rule must

be removed; then repeat from the step 1.
5 RIPPERk stops adding rules when there are no more positive examples

left or when a rule has an unacceptably large error rate, or when the
last rule added is too complicated according to some criterion.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

RIPPERk

To build a rule:
1 Randomly partition all the examples which have not been covered by

any rule yet into two subsets: a growing set and a pruning set.
2 Grow a rule by greedily adding conditions until the rule reaches a

confidence of 100% using only the growing set.
3 To prevent growing set overfitting, immediately prune the rule, deleting

some conditions based on a pruning criterion, using the pruning data.
4 Lastly, all the positive and negative examples covered by the rule must

be removed; then repeat from the step 1.
5 RIPPERk stops adding rules when there are no more positive examples

left or when a rule has an unacceptably large error rate, or when the
last rule added is too complicated according to some criterion.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

RIPPERk

To build a rule:
1 Randomly partition all the examples which have not been covered by

any rule yet into two subsets: a growing set and a pruning set.
2 Grow a rule by greedily adding conditions until the rule reaches a

confidence of 100% using only the growing set.
3 To prevent growing set overfitting, immediately prune the rule, deleting

some conditions based on a pruning criterion, using the pruning data.
4 Lastly, all the positive and negative examples covered by the rule must

be removed; then repeat from the step 1.
5 RIPPERk stops adding rules when there are no more positive examples

left or when a rule has an unacceptably large error rate, or when the
last rule added is too complicated according to some criterion.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

RIPPERk

To build a rule:
1 Randomly partition all the examples which have not been covered by

any rule yet into two subsets: a growing set and a pruning set.
2 Grow a rule by greedily adding conditions until the rule reaches a

confidence of 100% using only the growing set.
3 To prevent growing set overfitting, immediately prune the rule, deleting

some conditions based on a pruning criterion, using the pruning data.
4 Lastly, all the positive and negative examples covered by the rule must

be removed; then repeat from the step 1.
5 RIPPERk stops adding rules when there are no more positive examples

left or when a rule has an unacceptably large error rate, or when the
last rule added is too complicated according to some criterion.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

Decision Tree
Example data: hospitalization context where patients are instances described
by their age, weight and gender. Data are normally collected in tabular form:

Sample Age Weight Gender Class label
1 37 70 M ILL
2 49 81 M HEALTHY
3 20 55 F ILL

.

By means of learning algorithms, a decision tree classifier can be trained
from such data:

ILL HEALTHY

ILL

W
eig

ht
≤

90
W

eight
>

90

Age
≤

30
Age

>
30

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

Decision Tree
Example data: hospitalization context where patients are instances described
by their age, weight and gender. Data are normally collected in tabular form:

Sample Age Weight Gender Class label
1 37 70 M ILL
2 49 81 M HEALTHY
3 20 55 F ILL

.

By means of learning algorithms, a decision tree classifier can be trained
from such data:

ILL HEALTHY

ILL

W
eig

ht
≤

90
W

eight
>

90

Age
≤

30
Age

>
30

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

CART

The algorithm builds a binary tree splitting each node into two
child nodes repeatedly using the following steps:

1 For each feature (i.e. each attribute) with K different
values, there exist K-1 possible splits; choose for each
feature the split that maximizes the splitting criterion.

2 Among the best splits from step 1 choose the one which
maximizes the splitting criterion.

3 Split the node using the best node split from step 2 and
repeat from step 1 until a certain stopping criterion is
satisfied.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

CART

The algorithm builds a binary tree splitting each node into two
child nodes repeatedly using the following steps:

1 For each feature (i.e. each attribute) with K different
values, there exist K-1 possible splits; choose for each
feature the split that maximizes the splitting criterion.

2 Among the best splits from step 1 choose the one which
maximizes the splitting criterion.

3 Split the node using the best node split from step 2 and
repeat from step 1 until a certain stopping criterion is
satisfied.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Hierarchical problems
Rule-based models
Rule-extraction

CART

The algorithm builds a binary tree splitting each node into two
child nodes repeatedly using the following steps:

1 For each feature (i.e. each attribute) with K different
values, there exist K-1 possible splits; choose for each
feature the split that maximizes the splitting criterion.

2 Among the best splits from step 1 choose the one which
maximizes the splitting criterion.

3 Split the node using the best node split from step 2 and
repeat from step 1 until a certain stopping criterion is
satisfied.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Install

Add the GitHub project as a repository in the composer.json file of
your Laravel application as follows:

1 "repositories": [
2 {
3 "type": "vcs",
4 "url": "https://github.com/aclai-lab/piton"
5 }
6]

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Install

And then add the package in the require section:

1 "require": {
2 "aclai/piton": "master"
3 }

Finally, run in the terminal the composer update command.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Workflow

The package reads data directly from a MySQL database following the
parameters specified into a problem configuration file, which information
will be stored into the Problems table, and creating a dataset.

Then, it derives the hierarchy of problems, and creates a new instance
in the Model version table that will store information about the extracted
hierarchy.

Lastly, it will launch the training process for each problem, associatiating
each extracted rule-based model to its correspondent problem in the
hierarchy; these models are stored in the Class model table, while their
rules are stored in the Rules table.

Note that the database is dynamic, and therefore the process can be
iterated over time (e.g. once a week) with new data.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Workflow

The package reads data directly from a MySQL database following the
parameters specified into a problem configuration file, which information
will be stored into the Problems table, and creating a dataset.

Then, it derives the hierarchy of problems, and creates a new instance
in the Model version table that will store information about the extracted
hierarchy.

Lastly, it will launch the training process for each problem, associatiating
each extracted rule-based model to its correspondent problem in the
hierarchy; these models are stored in the Class model table, while their
rules are stored in the Rules table.

Note that the database is dynamic, and therefore the process can be
iterated over time (e.g. once a week) with new data.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Workflow

The package reads data directly from a MySQL database following the
parameters specified into a problem configuration file, which information
will be stored into the Problems table, and creating a dataset.

Then, it derives the hierarchy of problems, and creates a new instance
in the Model version table that will store information about the extracted
hierarchy.

Lastly, it will launch the training process for each problem, associatiating
each extracted rule-based model to its correspondent problem in the
hierarchy; these models are stored in the Class model table, while their
rules are stored in the Rules table.

Note that the database is dynamic, and therefore the process can be
iterated over time (e.g. once a week) with new data.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Workflow

The package reads data directly from a MySQL database following the
parameters specified into a problem configuration file, which information
will be stored into the Problems table, and creating a dataset.

Then, it derives the hierarchy of problems, and creates a new instance
in the Model version table that will store information about the extracted
hierarchy.

Lastly, it will launch the training process for each problem, associatiating
each extracted rule-based model to its correspondent problem in the
hierarchy; these models are stored in the Class model table, while their
rules are stored in the Rules table.

Note that the database is dynamic, and therefore the process can be
iterated over time (e.g. once a week) with new data.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Pitón database

Problems
ID

Name
Input tables

Input columns
Output columns
Where clauses

Order by clauses
Limit

Identifier column name

Model version
ID

Problem ID
Author ID
Learner

Training mode
Cut off value

Experiment ID
Date

Hierarchy
Test results
Test date

Class model
ID

Model version ID
Recursion level

Father node
Class
Rules

Json logic rules
Attributes

Test results*
Test date

Additional infos

Rules
ID

Class model ID
Antecedents
Consequent

Covered
Support

Confidence
Lift

Conviction
Global covered
Global support

Global confidence
Global lift

Global conviction

Figure: Database structure

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Configuring the database

First, one should add the following new connection in the
connections array inside the config/database.php file:

1 ’piton_connection’ => [
2 ’driver’ => env(’DB_CONNECTION_PITON’),
3 ’host’ => env(’DB_HOST_PITON’, ’127.0.0.1’),
4 ’port’ => env(’DB_PORT_PITON’, ’3306’),
5 ’database’ => env(’DB_DATABASE_PITON’, ’forge’),
6 ’username’ => env(’DB_USERNAME_PITON’, ’forge’),
7 ’password’ => env(’DB_PASSWORD_PITON’, ’’),
8 ’unix_socket’ => ’’,
9 ’charset’ => ’utf8mb4’,

10 ’collation’ => ’utf8mb4_unicode_ci’,
11 ’prefix’ => ’’,
12 ’prefix_indexes’ => true,
13 ’strict’ => true,
14 ’engine’ => null,
15],

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Configuring the database

Then, one should add the following to the .env file of the project, to
specify how to access this database:

1 DB_CONNECTION_PITON=mysql
2 DB_HOST_PITON=127.0.0.1
3 DB_PORT_PITON=3306
4 DB_DATABASE_PITON=<your_piton_database>
5 DB_USERNAME_PITON=<your_mysql_username>
6 DB_PASSWORD_PITON=<your_mysql_password>

After the database has been configured, it is finally possible to launch
the php artisan migrate command from the command line to
populate it.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Training

1 Publish the problem-config file via the following command:
php artisan vendor:publish --tag=problem-config

2 Fill it, and rename it after the problem to be solved.

3 Publish the configuration file for the specified learner (between
prip, sklearn_cart, wittgenstein_irep, wittgenstein_ripperk):
php artisan vendor:publish --tag=<learner_name>-config

4 Run the piton:update_models command, which accepts as
parameters a problem name, an author ID, the name of the
learner to be used and, eventually, the specific algorithm to be
used for the training.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Training

1 Publish the problem-config file via the following command:
php artisan vendor:publish --tag=problem-config

2 Fill it, and rename it after the problem to be solved.

3 Publish the configuration file for the specified learner (between
prip, sklearn_cart, wittgenstein_irep, wittgenstein_ripperk):
php artisan vendor:publish --tag=<learner_name>-config

4 Run the piton:update_models command, which accepts as
parameters a problem name, an author ID, the name of the
learner to be used and, eventually, the specific algorithm to be
used for the training.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Training

1 Publish the problem-config file via the following command:
php artisan vendor:publish --tag=problem-config

2 Fill it, and rename it after the problem to be solved.

3 Publish the configuration file for the specified learner (between
prip, sklearn_cart, wittgenstein_irep, wittgenstein_ripperk):
php artisan vendor:publish --tag=<learner_name>-config

4 Run the piton:update_models command, which accepts as
parameters a problem name, an author ID, the name of the
learner to be used and, eventually, the specific algorithm to be
used for the training.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Training

1 Publish the problem-config file via the following command:
php artisan vendor:publish --tag=problem-config

2 Fill it, and rename it after the problem to be solved.

3 Publish the configuration file for the specified learner (between
prip, sklearn_cart, wittgenstein_irep, wittgenstein_ripperk):
php artisan vendor:publish --tag=<learner_name>-config

4 Run the piton:update_models command, which accepts as
parameters a problem name, an author ID, the name of the
learner to be used and, eventually, the specific algorithm to be
used for the training.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Prediction

Prediction can be done in two different ways:

Using the php artisan piton:predict_by_identifier

command.

Using the predictByIdentifier() function of the DBFit class.
This function accepts as parameters an instance id, and an
instance of model version id, to specify which rule-based models
to use (i.e. associated with which execution), and return the
prediction in json format, so that it can easily be displayed on a
web page (even using AJAX).

Example:
$lastMV = ModelVersion : : orderByDesc (’ i d ’)−> f i r s t () ;
$ d b f i t = new DBFit () ;
$ p r e d i c t i o n = $ d b f i t −> p r e d i c t B y I d e n t i f i e r (1020 , [] , $lastMV [’ i d ’]) ;

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Install
Workflow
Configuring the database
Training
Prediction

Prediction

Prediction can be done in two different ways:

Using the php artisan piton:predict_by_identifier

command.

Using the predictByIdentifier() function of the DBFit class.
This function accepts as parameters an instance id, and an
instance of model version id, to specify which rule-based models
to use (i.e. associated with which execution), and return the
prediction in json format, so that it can easily be displayed on a
web page (even using AJAX).

Example:
$lastMV = ModelVersion : : orderByDesc (’ i d ’)−> f i r s t () ;
$ d b f i t = new DBFit () ;
$ p r e d i c t i o n = $ d b f i t −> p r e d i c t B y I d e n t i f i e r (1020 , [] , $lastMV [’ i d ’]) ;

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Problem

Given information about the patient, such as its anamnesis, its
menopausal state, its densitometry, we would like to predict which
therapies and respective active principles the physician could suggest
the patient.

This can easily be seen as a hierarchy of problems consisting of two
levels: the first concerning the type of the suggested therapy, the
second concerning which active principle to suggest.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Problem
Therapy name Abbreviation Active principle Abbreviation

Hormonal
Therapy Thorm

MHT (tibolone) tib
MHT (oral) oral

MHT transdermal trans
MHT (TSEC) tsec

Osteoprotective
Therapy Tosteop

Alendronate ale
Alendronate + vit D ale + vD

Risendronate ris
Ibandronate iba
Clodronate clo
Raloxifene ral

Bazedoxifene baz
Denomasub den
Teriparatide ter
Zoledronate zol

Vitamin D
Therapy TvitDth

Colecalciferol colec
Calcifediol calci

Vitamin D
Supplementation

SvitDsup
Colecalciferol colec

Calcifediol calci
Calcium
Supplementation

Scalsup
Carbonated calcium carb

Citrated calcium citr

Table: Possible therapies and respective active principles.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Problem
Treatment Suggestion

Thorm

. . .

Tosteop

. . .

TvitDth

. . .

SvitDsup

. . .

Scalsup

. . .

Thorm

tib oral trans tsec

TvitDth

colec calci

SvitDsup

colec calci

Scalsup

carb citr

Tosteop

ale ale + vD ris iba clo ral baz den ter zol

Figure: Possible hierarchy to solve the treatment suggestion problem

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Database

Reports
ID

Date
Patient ID

Patients
ID

Birth
Sex

Diagnosis
FRAX

DeFRA
Severe osteoporosis

Femur status
Spine status

Report ID

Anamnesis
BMI

Menopause state
Age at last menopause

Therapy status
Vertebral fractures
Femoral fractures

Other fractures
Smoking habits
Alcohol intake

Cortisone
Current illnesses

Secondary causes
Clinical information

Previous spine T-score
Previous spine Z-score
Previous neck T-score
Previous neck Z-score

Report ID

Densitometries
Spine T-score
Spine Z-score

Neck left T-score
Neck right T-score
Neck left Z-score

Neck right Z-score
Report ID

Treatment suggestions
ID

Therapy type
Report ID

Active principles
ID

Name
Report ID

Unitary treatment suggestions
ID

Therapy suggestion ID
Active principle ID

Figure: Sub-set of tables of the CMO database.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Experiment results

To estimate the effectiveness of the application of the package to the
CMO system, a complete experiment has been executed, considering
the recommendations that have been given from Sept. the 1st, 2018
to Aug. the 31th, 2020.

In this experiment, only three data set have been considered for
classifier extraction at the first level and seven at the second level;
this is becaues the others were unbalanced (e.g. one class appeared
for less than 10% of the instances).

For each data set, 80% of the instances are used as a training set,
while the 20% stratified most recent records of each data set are
used for testing purposes.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Experiment results

For each problem and its corresponding test, we reported the following
values:

accuracy, that is, the rate of corrected classification;

sensitivity, that is, the rate of true positives;

specificity, that is, the rate of true negatives;

positive predicted value, that is, the inverse of the false discovery rate;

negative predicted value, that is, the inverse of the false omission rate;

F1 score, that is, the harmonic mean of sensitivity and positive
predicted value.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Experiment results

Classifier Accuracy F1 Sensitivity Specificity PPV NPV
Γosteop 0.86 0.63 0.55 0.95 0.74 0.88
ΓvitDsup 0.75 0.76 0.74 0.76 0.79 0.71
Γcalsup 0.83 0.61 0.47 0.97 0.85 0.82

Table: Results of the experiment: global evaluation of first level
classifiers.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Experiment results

Classifier Accuracy F1 Sensitivity Specificity PPV NPV
Γale

osteop 0.72 0.39 0.27 0.95 0.73 0.72
Γden

osteop 0.71 0.35 0.25 0.92 0.58 0.73
Γris

osteop 0.83 0.12 0.10 0.92 0.14 0.89
Γcalci

vitDsup 0.93 0.65 0.54 0.98 0.83 0.94
Γcolec

vitDsup 0.92 0.96 0.98 0.54 0.94 0.79
Γcitr

calsup 0.62 0.52 0.46 0.75 0.60 0.63
Γcarb

calsup 0.62 0.68 0.75 0.46 0.63 0.60

Table: Results of the experiment: global evaluation of second level
classifiers.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Experiment results

For local evaluation, we consider the number of rules of each classifier and
their distribution among the following four types, based on support and
confidence:

I Relevant and reliable, showing support > 0.2 and confidence > 0.7;
II Relevant, but unreliable, showing support > 0.2 but confidence ≤ 0.7;
III Irrelevant, but reliable, showing support ≤ 0.2 but confidence > 0.7;
IV Irrelevant and unreliable, showing support ≤ 0.2 and confidence ≤ 0.7.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Experiment results

Types I and III (which include only reliable rules) are the most
common ones, indicating that our approach is relatively stable.

Classifier # #I #II #III #IV
Γosteop 6 1 0 5 0
ΓvitDsup 6 2 2 2 0
Γcalsup 4 1 0 2 1

Table: Results of the experiment: local evaluation of first level
classifiers.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Thank you for your
attention

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Problem
Database
Experiment results

Thank you for your
attention

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

CART
Pruning

Then, in order to enhance the generalization of the resulting decision tree,
pruning is applied:

1 Split randomly training data into N folds.
2 Select a pruning level for the tree (level 0 equals to the full tree).
3 Use N − 1 folds to create N − 1 new pruned trees and estimate the

error on the Nth fold.
4 Repeat from step 2 until all pruning levels are used.
5 Find the smallest error and use the pruning level assigned to it.
6 Until the pruning level is reached, remove all the leafs in the lowest tree

level and assign the decision class (e.g. the class with the higher
number of cases covered by the node) to their parent node.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

CART
Pruning

Then, in order to enhance the generalization of the resulting decision tree,
pruning is applied:

1 Split randomly training data into N folds.
2 Select a pruning level for the tree (level 0 equals to the full tree).
3 Use N − 1 folds to create N − 1 new pruned trees and estimate the

error on the Nth fold.
4 Repeat from step 2 until all pruning levels are used.
5 Find the smallest error and use the pruning level assigned to it.
6 Until the pruning level is reached, remove all the leafs in the lowest tree

level and assign the decision class (e.g. the class with the higher
number of cases covered by the node) to their parent node.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

CART
Pruning

Then, in order to enhance the generalization of the resulting decision tree,
pruning is applied:

1 Split randomly training data into N folds.
2 Select a pruning level for the tree (level 0 equals to the full tree).
3 Use N − 1 folds to create N − 1 new pruned trees and estimate the

error on the Nth fold.
4 Repeat from step 2 until all pruning levels are used.
5 Find the smallest error and use the pruning level assigned to it.
6 Until the pruning level is reached, remove all the leafs in the lowest tree

level and assign the decision class (e.g. the class with the higher
number of cases covered by the node) to their parent node.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

CART
Pruning

Then, in order to enhance the generalization of the resulting decision tree,
pruning is applied:

1 Split randomly training data into N folds.
2 Select a pruning level for the tree (level 0 equals to the full tree).
3 Use N − 1 folds to create N − 1 new pruned trees and estimate the

error on the Nth fold.
4 Repeat from step 2 until all pruning levels are used.
5 Find the smallest error and use the pruning level assigned to it.
6 Until the pruning level is reached, remove all the leafs in the lowest tree

level and assign the decision class (e.g. the class with the higher
number of cases covered by the node) to their parent node.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

CART
Pruning

Then, in order to enhance the generalization of the resulting decision tree,
pruning is applied:

1 Split randomly training data into N folds.
2 Select a pruning level for the tree (level 0 equals to the full tree).
3 Use N − 1 folds to create N − 1 new pruned trees and estimate the

error on the Nth fold.
4 Repeat from step 2 until all pruning levels are used.
5 Find the smallest error and use the pruning level assigned to it.
6 Until the pruning level is reached, remove all the leafs in the lowest tree

level and assign the decision class (e.g. the class with the higher
number of cases covered by the node) to their parent node.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

CART
Pruning

Then, in order to enhance the generalization of the resulting decision tree,
pruning is applied:

1 Split randomly training data into N folds.
2 Select a pruning level for the tree (level 0 equals to the full tree).
3 Use N − 1 folds to create N − 1 new pruned trees and estimate the

error on the Nth fold.
4 Repeat from step 2 until all pruning levels are used.
5 Find the smallest error and use the pruning level assigned to it.
6 Until the pruning level is reached, remove all the leafs in the lowest tree

level and assign the decision class (e.g. the class with the higher
number of cases covered by the node) to their parent node.

Alberto Paparella A Laravel package for machine learning

Introduction
Preliminaries

How to use the package
Automated treatment suggestion

Backup slides

Experiment results

Classifier # #I #II #III #IV
Γale

osteop 2 0 2 0 0
Γden

osteop 4 0 1 1 2
Γris

osteop 2 1 0 0 1
Γcalci

vitDsup 5 1 0 2 2
Γcolec

vitDsup 5 1 0 2 2
Γcitr

calsup 3 0 2 1 0
Γcarb

calsup 3 0 2 1 0

Table: Results of the experiment: local evaluation of second level
classifiers.

Alberto Paparella A Laravel package for machine learning

	Introduction
	Pitón

	Preliminaries
	Hierarchical problems
	Rule-based models
	Rule-extraction

	How to use the package
	Install
	Workflow
	Configuring the database
	Training
	Prediction

	Automated treatment suggestion
	Problem
	Database
	Experiment results

	Backup slides

