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Introduction



Introduction

• The historical datasets commonly employed for weather forecasts

are typically structured in a regular spatial grid format which

closely resembles images, with each weather variable akin to a

map or, when considering the temporal axis, as a video.

• Several classes of generative models, such as Generative

Adversarial Networks (GANs), Variational Autoencoders (VAEs),

and Denoising Diffusion Models (DDMs), have demonstrated their

effectiveness in tackling the next-frame prediction problem.

• Consequently, it is only natural to assess their performance in the

context of weather prediction benchmarks.

Figure 1: Example of precipitation data from the ERA5 [1] dataset. 2



Introduction

• DDMs, in particular, hold strong appeal in this domain due to the

inherently probabilistic nature of weather forecasting, aiming to

model the probability distribution of weather indicators.

• This thesis is dedicated to investigating the application of diffusion

models in the realm of weather forecasting.

• To achieve this, a specific subset of the ERA5 [1] dataset has been

leveraged, encompassing hourly data for Western Europe spanning

the years 2016 to 2021.

• Within this context, the effectiveness of diffusion models has been

rigorously assessed in the challenging domain of precipitation

nowcasting in direct comparison to the well-established U-Net

models documented in the existing literature.
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Diffusion generative models



Diffusion generative models

• Essentially, a diffusion model leverages a single network to

effectively eliminate noise from images, with the flexibility to

parametrically adjust the level of noise to be removed.

• This network is subsequently employed to produce novel samples by

iteratively diminishing noise in a designated noisy image.

• This iterative process commences from an entirely random noise

configuration and is conventionally known as reverse diffusion.

• Its objective is to effectively invert the direct diffusion process,

where noise is incrementally added to the source image.

Figure 2: Forward diffusion process (from left to right) and reverse diffusion

process (from right to left).
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Denoising Diffusion Probabilistic Models (DDPM)

• From a mathematical standpoint, the objective of generative

models is to identify a parameter vector θ utilized to shape a

distribution pθ(x0), characterized by a neural network, which

closely approximate and model the original data distribution q(x0).

• Denoising Diffusion Probabilistic Models (DDPM) [2] posit that

the generative distribution pθ(x0) follows a specific form defined as:

pθ(x0) =

∫
pθ(xT )

T∏
t=1

pθ(xt−1|xt)dx1:T (1)

characterizing the generative process by modeling the joint

distribution over a sequence of time steps, where pθ(xT ) represents

the initial distribution, and the subsequent terms capture the

conditional transitions from xt to xt−1.
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Denoising Diffusion Implicit Models (DDIM)

• In Denoising Diffusion Implicit Models (DDIM) [3], the authors

introduce a non-Markovian diffusion process defined as:

qσ(x1:T |x0) = qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt, x0) (2)

• The term qσ(xT |x0) is described by a Gaussian distribution.

• In practical terms, a neural network ϵ
(t)
θ (xt, αt) is trained to

effectively map a given pair of inputs, xt and αt (representing the

noise rate), into an estimate of the noise component, ϵt, that when

added to x0 facilitates the construction of the next time step, xt.

• The loss function can be interpreted as the weighted mean

squared error between the predicted noise and the actual noise.
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Conditioning

• The process of generating data often requires a way to control the

sample creation process to influence the final output: this procedure

is referred to as conditioned or guided diffusion.

• In mathematical terms, guidance entails the conditioning of a prior

data distribution p(x), with specific constraints (e.g., class labels,

image/text embeddings), giving a conditional distribution p(x|y).
• To transform a diffusion model pθ into a conditional diffusion model,

we introduce conditioning information y at each step of the diffusion

process, yielding the following formulation:

pθ(x0:T |y) = pθ(xT )

T∏
t=1

pθ(xt−1|xt, y) (3)

• The learning of this distribution typically follows one of two

approaches: the first approach relies on an auxiliary classifier [4]; the

second approach operates without a classifier, offering an alternative

methodology for modeling conditional diffusion.
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Diffusion generative models for

precipitation nowcasting



The DDIM architecture: denoising

• The denoising network ϵθ(xt, αt) consists of a U-Net architecture.

• It takes as input the noisy images, denoted as xt, along with a

corresponding noise variance, αt, and aims to accurately estimate

the level of noise affecting the image.

Figure 3: U-net architecture. Image taken from [5].
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The DDIM architecture: conditioning

• Conditioning is achieved in a classifier-free manner [6] by directly

appending the conditioning frames to the noisy images along the

channel axis.

Figure 4: Conditioning is implemented by stacking additional information

alongside the channel axis in the denoising network.
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A novel approach: Generative Ensemble Diffusion (GED)

• The proposed approach, referred to as Generative Ensemble

Diffusion (GED), harnesses a diffusion model to generate a

diverse set of potential weather scenarios.

• These scenarios are subsequently amalgamated into a probable

prediction through the application of a sophisticated

post-processing network.

• In direct contrast to recent deep learning models, the GED approach

consistently demonstrated superior performance across multiple

performance metrics, underscoring its significant advancement in the

field of weather forecasting.
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A novel approach: Generative Ensemble Diffusion (GED)

Figure 5: Generative Ensemble Diffusion (GED) prediction structure,

showing the multiple denoising cycles and the final post-processing step.
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Dataset description and pre-processing

• The proposed Generative Ensemble Diffusion (GED) model has

been compared with the state-of-the-art Weather Fusion UNet

(WF-UNet) model introduced in [7].

• The chosen dataset comprises precipitation and wind radar images

covering 14 European countries, ranging from January 2016 to

December 2021, featuring a temporal resolution of 1 hour and a

spatial resolution of 31 km2, relying on the ERA5 dataset [1].

• It’s worth noting that precipitation tends to exhibit sparsity, often

being absent in the analyzed region, introducing a bias toward

predicting zero values [8].

• To address this issue, sequences have been filtered such that a

certain percentage of rain is present, simulating the conditions

outlined in the EU-50 and EU-20 datasets as specified in [7].
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Additional features

• Additional features encompassed wind speed, derived from both

northerly and easterly wind components, the land-sea mask, a

geopotential map, and a sinusoidal time embedding.

Figure 6: Visual example of the additional features.
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Training and evaluation

• The diffusion model was trained with a batch size of 2 throughout

40 epochs using data from 2016 to 2020.

• For optimization, the AdamW algorithm was employed, utilizing a

learning rate of 1e-04 and a weight decay of 1e-05; furthermore, a

fine-tuning phase was conducted, encompassing 10 epochs with a

reduced learning rate of 1e-05 and a weight decay of 1e-06.

• As with the reference model, sequences composed of more than 50%

non-rain values were excluded from the training process.

• Mean Absolute Error (MAE) has been used as a loss function and

applied to the noise difference.

• The evaluation was carried out using data from the test year of

2021, maintaining a fixed number of 15 diffusion steps and assessing

performance using the Mean Squared Error (MSE) metric:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4)
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Training and evaluation

• The post-processing U-Net takes fifteen distinct generative

outputs from the diffusion model as input, each containing

predictions for the subsequent three hours, and produces an output

comprising three images, each predicting the rainfall for one of the

upcoming three hours.

• The training of the post-processing U-Net utilizes AdamW as the

optimizer with a learning rate set at 1e-4 and a weight decay of 1e-5.

• The loss function employed is the Mean Squared Error (MSE),

calculated as the discrepancy between the predicted images and

their corresponding ground truth.
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MSE values and additional metrics for EU-20 dataset

Model MSE Accuracy Precision Recall

1 hour ahead

WF-UNet 2.67e-04 0.933 0.790 0.847

Single Diffusion 2.86e-04 0.911 0.754 0.888

GED (mean) 2.25e-04 0.930 0.786 0.901

GED (postprocess) 2.03e-04 0.923 0.798 0.909

2 hour ahead

WF-UNet 4.87e-04 0.895 0.664 0.807

Single Diffusion 4.69e-04 0.886 0.705 0.831

GED (mean) 3.93e-04 0.900 0.731 0.848

GED (postprocess) 3.53e-04 0.898 0.742 0.849

3 hour ahead

WF-UNet 6.34e-04 0.877 0.626 0.736

Single Diffusion 6.10e-04 0.853 0.638 0.758

GED (mean) 5.20e-04 0.880 0.689 0.801

GED (postprocess) 4.70e-04 0.891 0.701 0.796

Table 1: Results comparison on the EU-20 dataset. 16



MSE values and additional metrics for EU-50 dataset

Model MSE Accuracy Precision Recall

1 hour ahead

WF-UNet 2.50e-04 0.921 0.803 0.849

Single Diffusion 2.59e-04 0.915 0.767 0.882

GED (mean) 2.02e-04 0.924 0.782 0.885

GED (postprocess) 1.99e-04 0.913 0.803 0.907

2 hour ahead

WF-UNet 4.62e-04 0.877 0.684 0.813

Single Diffusion 4.51e-04 0.875 0.699 0.844

GED (mean) 3.59e-04 0.882 0.711 0.862

GED (postprocess) 3.40e-04 0.878 0.724 0.860

3 hour ahead

WF-UNet 6.31e-04 0.855 0.647 0.743

Single Diffusion 6.03e-04 0.848 0.672 0.801

GED (mean) 4.92e-04 0.856 0.701 0.828

GED (postprocess) 4.65e-04 0.861 0.706 0.821

Table 2: Results comparison on the EU-50 dataset. 17



Experiments

(a) (b)

Figure 7: Single Diffusion results for the year 2021 on EU50, depicting

significant score variations depending on the month of the year. (a) illustrates

the month-wise dissimilarity in scores for each of the three predicted hours. In

(b), we observe that the dissimilarity remains consistent across predictions

computed with Single Diffusion, GED (mean), and GED (post-process).
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Precipitation nowcasting with generative diffusion models[9]

• Submitted to Neural Computing and Applications (NCAA)

• Pre-print available on arXiv
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Denoising Diffusion Probabilistic Models (DDPM) - Details

Denoising Diffusion Probabilistic Models (DDPM) [2] posit that the

generative distribution pθ(x0) follows a specific form defined as:

pθ(x0) =

∫
pθ(x0:T )dx1:T (5)

Here, the time horizon extends to T > 0, and pθ(x0:T ) can be further

expressed as:

pθ(x0:T ) = pθ(xT )

T∏
t=1

pθ(xt−1|xt) (6)

In this formulation, DDPM characterizes the generative process by

modeling the joint distribution over a sequence of time steps, where

pθ(xT ) represents the initial distribution, and the subsequent terms

capture the conditional transitions from xt to xt−1 as the process evolves.
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Denoising Diffusion Probabilistic Models (DDPM) - Details

Training in diffusion models traditionally relies on a variational lower

bound of the negative log-likelihood:

− log pθ(x0)

≤ − log pθ(x0)+DKL(q(x1:T |x0)∥pθ(x1:T |x0))

= − log pθ(x0)+Eq

[
log

q(x1:T |x0)

pθ(x0:T )/pθ(x0)

]
= − log pθ(x0)+Eq

[
log

q(x1:T |x0)

pθ(x0:T )
+ log pθ(x0)

]
= Eq

[
log q(x1:T |x0)− pθ(x0:T )

]
= L(θ) (7)

What sets diffusion models apart from typical latent variable models like

Variational Autoencoders (VAEs) [10, 11, 12] is that they employ a fixed,

non-trainable inference procedure denoted as q(x1:T |x0).
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Denoising Diffusion Implicit Models (DDIM) - Details

In Denoising Diffusion Implicit Models (DDIM) [3], the authors

introduce a non-Markovian diffusion process defined as:

qσ(x1:T |x0) = qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt, x0) (8)

Here, the term qσ(xT |x0) is described by a Gaussian distribution:

qσ(xT |x0) = N (xT |
√
αTx0, (1− αT ) · I) (9)

Additionally, the conditional distribution qσ(xt−1|xt, x0) takes the form:

qσ(xt−1|xt, x0) = N
(
xt−1

∣∣∣µσt
(x0, αt−1);σ

2
t · I

)
(10)

with
µσt

(x0, αt−1) =
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt−

√
αtx0√

1−αt
.

29



Denoising Diffusion Implicit Models (DDIM) - Details

The choice of q(xt−1|xt, x0) is strategically made to fulfill two critical

aspects of the DDPM diffusion process: the Gaussian nature of

q(xt−1|xt, x0) when conditioned on x0, and the ability to recover the

same marginal distribution as in DDPM, where:

qσ(xt|x0) = N (xt|
√
αtx0; (1− αt) · I. (11)

This property allows us to represent xt as a linear combination of x0 and

a noise variable ϵt ∼ N (ϵt|0; I):

xt =
√
αtx0 +

√
1− αtϵt. (12)

Next, our task is to define a trainable generative process denoted as

pθ(x0:T ), where the conditional distribution pθ(xt−1|xt) is crafted to

incorporate the structure from qσ(xt−1|xt, x0). The concept is that when

provided with a noisy observation xt, the process begins by predicting x0

and then employs this prediction to derive xt−1 according to equation 10.
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Denoising Diffusion Implicit Models (DDIM) - Details

In practical terms, a neural network denoted as ϵ
(t)
θ (xt, αt) is trained to

effectively map a given pair of inputs, xt and αt (representing the noise

rate), into an estimate of the noise component, ϵt. This estimated noise,

when added to x0, facilitates the construction of the next time step, xt.

Consequently, the conditional distribution pθ(xt−1|xt) is approximated

as a Dirac delta function δ
f
(t)
θ

, where:

f
(t)
θ (xt, αt) =

xt −
√
1− αtϵθ(xt, αt)√

αt
. (13)

Using f
(t)
θ (xt, αt) as an approximation of x0 at timestep t, xt−1 is

subsequently calculated as follows:

xt−1 =
√
αt−1 · f (t)

θ (xt, αt) +
√
1− αt−1 − σ2

t · ϵθ(xt, αt) (14)

.
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Denoising Diffusion Implicit Models (DDIM) - Details

Regarding the loss function, the term in equation 7 can be further

decomposed into the sum of the following terms [13]:

Lθ = LT + Lt−1 + · · ·+ L0 (15)

where

LT = DKL(q(xT |x0) ∥ pθ(xT ))

Lt = DKL(q(xt|xt+1, x0)∥pθ(xt|xt+1))

for 1 ≤ t ≤ T − 1

L0 = − log pθ(x0|x1)

This breakdown of the loss function provides a more granular perspective

on the optimization process.
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Denoising Diffusion Implicit Models (DDIM) - Details

All the aforementioned distributions take the form of Gaussians,

facilitating the calculation of their KL divergences in a closed-form

manner, following a Rao-Blackwellized approach. After a series of

manipulations, we arrive at the following formulation:

Lt = Et ∼ [1, T ], x0, ϵt

[
γt|ϵt − ϵθ(xt, t)|2

]
(16)

This expression can be interpreted as the weighted mean squared error

between the predicted noise and the actual noise at time t. In practice,

the weighting parameters are often omitted, as experimental evidence

suggests that the training process tends to perform better without them.
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Denoising Diffusion Implicit Models (DDIM) - Details

Algorithm 1 Training

1: repeat

2: x0 ∼ q(x0)

3: t ∼Uniform(1,..,T)

4: ϵ ∼ N (0; I)

5: xt =
√
αtxb +

√
1−αtϵ

6: Backpropagate on ||ϵ− ϵθ(xt, αt)||2

7: until converged
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Denoising Diffusion Implicit Models (DDIM) - Details

Sampling is an iterative process, starting from a purely noisy image

xT ∼ N (0, I). The denoised version of the image at timestep t is

obtained using equation 14.

Algorithm 2 Sampling

1: xT ∼ N (0, I)

2: for t = T, ..., 1 do

3: ϵ = ϵθ(xa, xt, αt)

4: x̃0 = 1√
αt
(xt − 1−αt√

1−αt
ϵ)

5: xt−1 =
√
αt−1x̃0 +

√
1− αt−1ϵ

6: end for
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Diffusion classifier guidance

• The concept underpinning classifier guidance is as follows: the

objective is to learn the gradient of the logarithm of the conditional

density pθ(xt|y).
• By applying Bayes’ rule, this can be expressed as:

∇xt log pθ(xt|y) = ∇xt log

(
pθ(y|xt) · pθ(xt)

pθ(y)

)
(17)

• Given that the gradient operator solely pertains to xt, the term

pθ(y) can be eliminated; after simplification, we arrive at:

∇xt
log pθ(xt|y) =∇xt

log pθ(xt)

+ s · ∇xt
log pθ(y|xt) (18)

Here, the scalar term s assumes the role of modulating the strength

of the guidance component.
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Diffusion classifier guidance

• As elucidated in [14], one approach to guide the diffusion process

during generation entails the utilization of a classifier, denoted as

fϕ(y|xt, t)).

• This method involves the training of a classifier fϕ(y|xt, t) using a

noisy image xt to predict its corresponding class label y.

• Subsequently, the gradient ∇x log fϕ(y|xt) can be harnessed to steer

the diffusion sampling process towards the targeted conditioning

information y through adjustments to the noise prediction.

• This technique is particularly well-suited for scenarios involving

discrete labels.
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Classifier-Free Diffusion Guidance

• The concept of conditioned diffusion, devoid of reliance on an

external classifier, has been extensively explored in [6].

• This approach involves the training of both a conditional diffusion

model, denoted as ϵθ(xt, t, y), and an unconditional model,

denoted as ϵθ(xt, t, 0).

• In many cases, the same neural network architecture can serve both

models: during training, the class label y is randomly set to 0,

thereby exposing the model to both conditional and unconditional

scenarios.

• The estimated noise, represented as ϵ̂θ(xt|t, y) at time step t,

subsequently emerges as a judiciously weighted combination of the

conditional and unconditional predictions:

ϵ̂θ(xt, t, y) = ϵθ(xt, t, y) + s · ϵθ(xt, t) (19)
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U-Net [5]

• The network structure consists of a downsampling sequence of

layers, succeeded by an upsampling sequence, all while incorporating

skip connections linking layers of equivalent dimensions.

• Typically, the configuration of the U-Net is defined by specifying the

number of downsampling blocks and the channel count for each

block.

• The upsampling component mirrors a symmetrical pattern, and the

spatial dimensions align with the image resolution.

• The entire structure of a U-Net can be encoded in a single list (e.g.,

[32, 64, 96, 128]), denoting both the number of downsampling

blocks (in this case, 4) and the associated channel counts, which

typically increases as the spatial dimensions decrease.

• For the experiments, a U-Net configuration of [64, 128, 256, 384]

has been used, which empirically proved to be the most effective.
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U-Net [5]

Figure 8: U-net architecture (example for 32x32 pixels in the lowest

resolution). Each blue box corresponds to a multi-channel feature map. The

number of channels is denoted on top of the box. The x-y-size is provided at

the lower left edge of the box. White boxes represent copied feature maps. The

arrows denote the different operations. Image taken from [5].
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Additional features

Name Units Description

100m wind speed ms−1 Wind speed of air at a height

of 100 meters above the sur-

face of the Earth, given east-

erly and northerly components u

and v the speed is obtained by√
(u2 + v2).

Timestamp [m,d,h] Timestamp including month,

day, and hour of the start of the

given sequence, tile encoded into

a 96x96 array.

Land-sea mask dimensionless Proportion of land, as opposed

to ocean or inland waters in a

grid box.

Geopotential m2s−2 Gravitational potential energy of

a unit mass, at a particular loca-

tion at the surface of the Earth,

relative to mean sea level.

Table 3: Additional features units and details. 41



Single diffusion with different inputs on EU-50

Inputs MSE 1h MSE 2h MSE 3h

8 rain 2.62e-04 4.60e-04 6.21e-04

8 rain + lsm + geopot 2.60e-04 4.61e-04 6.23e-04

8 rain + lsm + geopot + time 2.60e-04 4.56e-04 6.16e-04

8 rain + lsm + geopot + time +

2 wind speed

2.59e-04 4.51e-04 6.03e-04

Table 4: Results comparison on the EU-50 dataset using different sets of

additional features with the Single Diffusion model. All sets include 8 frames

representing total precipitation (rain). lsm and geopot stand for land-sea mask

and geopotential map, respectively. time represents the timestamp embedding.
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