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Introduction

e The historical datasets commonly employed for weather forecasts
are typically structured in a regular spatial grid format which
closely resembles images, with each weather variable akin to a
map or, when considering the temporal axis, as a video.

e Several classes of generative models, such as Generative
Adversarial Networks (GANs), Variational Autoencoders (VAEs),
and Denoising Diffusion Models (DDMs), have demonstrated their
effectiveness in tackling the next-frame prediction problem.

e Consequently, it is only natural to assess their performance in the
context of weather prediction benchmarks.
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Figure 1: Example of precipitation data from the ERAb [1] dataset. 5



Introduction

e DDMis, in particular, hold strong appeal in this domain due to the
inherently probabilistic nature of weather forecasting, aiming to
model the probability distribution of weather indicators.

e This thesis is dedicated to investigating the application of diffusion
models in the realm of weather forecasting.

e To achieve this, a specific subset of the ERAD [1] dataset has been
leveraged, encompassing hourly data for Western Europe spanning
the years 2016 to 2021.

e Within this context, the effectiveness of diffusion models has been
rigorously assessed in the challenging domain of precipitation
nowcasting in direct comparison to the well-established U-Net
models documented in the existing literature.
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Diffusion generative mo

e Essentially, a diffusion model leverages a single network to
effectively eliminate noise from images, with the flexibility to
parametrically adjust the level of noise to be removed.

e This network is subsequently employed to produce novel samples by
iteratively diminishing noise in a designated noisy image.

e This iterative process commences from an entirely random noise
configuration and is conventionally known as reverse diffusion.

e Its objective is to effectively invert the direct diffusion process,
where noise is incrementally added to the source image.
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Figure 2: Forward diffusion process (from left to right) and reverse diffusion
process (from right to left).



Denoising Diffusion Probabilistic Models (DDPM)

e From a mathematical standpoint, the objective of generative
models is to identify a parameter vector 6 utilized to shape a
distribution py(zg), characterized by a neural network, which
closely approximate and model the original data distribution ¢(zo).

e Denoising Diffusion Probabilistic Models (DDPM) [2] posit that
the generative distribution pg(z() follows a specific form defined as:

T
po(zo0) = /pa (zr H (T1—1|z)dzrr (1)

characterizing the generative process by modeling the joint
distribution over a sequence of time steps, where py(xr) represents
the initial distribution, and the subsequent terms capture the
conditional transitions from x; to x;_1.



Denoising Diffusion Implicit Models (DDIM)

e In Denoising Diffusion Implicit Models (DDIM) [3], the authors
introduce a non-Markovian diffusion process defined as:

53

do(1:7|20) = ¢o (x7|T0) H (w¢—1]2t, 70) (2)

e The term g, (z7|zo) is described by a Gaussian distribution.

e In practical terms, a neural network e(et)(a:t,at) is trained to
effectively map a given pair of inputs, ; and oy (representing the
noise rate), into an estimate of the noise component, €, that when
added to z( facilitates the construction of the next time step, x;.

e The loss function can be interpreted as the weighted mean
squared error between the predicted noise and the actual noise.



e The process of generating data often requires a way to control the
sample creation process to influence the final output: this procedure
is referred to as conditioned or guided diffusion.

e In mathematical terms, guidance entails the conditioning of a prior
data distribution p(x), with specific constraints (e.g., class labels,
image/text embeddings), giving a conditional distribution p(z|y).

e To transform a diffusion model py into a conditional diffusion model,
we introduce conditioning information y at each step of the diffusion
process, yielding the following formulation:

po(zo:r|y) = po(zT) Hpe(l’t—l |2, y) (3)

e The learning of this distribution typically follows one of two
approaches: the first approach relies on an auxiliary classifier [4]; the
second approach operates without a classifier, offering an alternative
methodology for modeling conditional diffusion.



Diffusion generative models for
precipitation nowcasting



The DDIM architecture: denoising

e The denoising network cy(x;, ;) consists of a U-Net architecture.

e |t takes as input the noisy images, denoted as x;, along with a
corresponding noise variance, «;, and aims to accurately estimate
the level of noise affecting the image.
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Figure 3: U-net architecture. Image taken from [5].



The DDIM architecture: conditioning

e Conditioning is achieved in a classifier-free manner [6] by directly
appending the conditioning frames to the noisy images along the
channel axis.

U-Net
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Noisy images

Figure 4: Conditioning is implemented by stacking additional information
alongside the channel axis in the denoising network.



A novel approach: Generative Ensemble Diffusion (GED)

e The proposed approach, referred to as Generative Ensemble
Diffusion (GED), harnesses a diffusion model to generate a
diverse set of potential weather scenarios.

e These scenarios are subsequently amalgamated into a probable
prediction through the application of a sophisticated
post-processing network.

e In direct contrast to recent deep learning models, the GED approach
consistently demonstrated superior performance across multiple
performance metrics, underscoring its significant advancement in the
field of weather forecasting.
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A novel approach: Generative Ensemble Diffusion (GED)
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Figure 5: Generative Ensemble Diffusion (GED) prediction structure,

showing the multiple denoising cycles and the final post-processing step.
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Dataset description and pre-processing

e The proposed Generative Ensemble Diffusion (GED) model has
been compared with the state-of-the-art Weather Fusion UNet
(WF-UNet) model introduced in [7].

e The chosen dataset comprises precipitation and wind radar images
covering 14 European countries, ranging from January 2016 to
December 2021, featuring a temporal resolution of 1 hour and a
spatial resolution of 31 km?, relying on the ERA5 dataset [1].

e It's worth noting that precipitation tends to exhibit sparsity, often
being absent in the analyzed region, introducing a bias toward
predicting zero values [8].

e To address this issue, sequences have been filtered such that a

certain percentage of rain is present, simulating the conditions
outlined in the EU-50 and EU-20 datasets as specified in [7].
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Additional features

e Additional features encompassed wind speed, derived from both
northerly and easterly wind components, the land-sea mask, a
geopotential map, and a sinusoidal time embedding.
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Figure 6: Visual example of the additional features.

St!
ssajuoIsUBUIP

®

&

>

I

°

13



Training and evaluation

e The diffusion model was trained with a batch size of 2 throughout
40 epochs using data from 2016 to 2020.

e For optimization, the AdamW algorithm was employed, utilizing a
learning rate of 1e-04 and a weight decay of 1e-05; furthermore, a
fine-tuning phase was conducted, encompassing 10 epochs with a
reduced learning rate of 1e-05 and a weight decay of 1e-06.

e As with the reference model, sequences composed of more than 50%
non-rain values were excluded from the training process.

e Mean Absolute Error (MAE) has been used as a loss function and
applied to the noise difference.

e The evaluation was carried out using data from the test year of
2021, maintaining a fixed number of 15 diffusion steps and assessing
performance using the Mean Squared Error (MSE) metric:

n

rom— L a2
AISE - n ;(yz yz) (4)
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Training and evaluation

e The post-processing U-Net takes fifteen distinct generative
outputs from the diffusion model as input, each containing
predictions for the subsequent three hours, and produces an output
comprising three images, each predicting the rainfall for one of the
upcoming three hours.

e The training of the post-processing U-Net utilizes AdamW as the
optimizer with a learning rate set at le-4 and a weight decay of le-5.

e The loss function employed is the Mean Squared Error (MSE),
calculated as the discrepancy between the predicted images and
their corresponding ground truth.
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MSE values and additional metrics for EU-20 dataset

Model MSE Accuracy Precision Recall

1 hour ahead

WF-UNet 2.67e-04 0.933 0.790 0.847
Single Diffusion 2.86e-04 0.911 0.754 0.888
GED (mean) 2.25e-04 0.930 0.786 0.901
GED (postprocess)  2.03e-04 0.923 0.798 0.909

2 hour ahead

WF-UNet 4.87e-04 0.895 0.664 0.807
Single Diffusion 4.69e-04 0.886 0.705 0.831
GED (mean) 3.93e-04 0.900 0.731 0.848
GED (postprocess)  3.53e-04 0.898 0.742 0.849

3 hour ahead

WEF-UNet 6.34e-04 0.877 0.626 0.736
Single Diffusion 6.10e-04 0.853 0.638 0.758
GED (mean) 5.20e-04 0.880 0.689 0.801
GED (postprocess)  4.70e-04 0.891 0.701 0.796

Table 1: Results comparison on the EU-20 dataset. 16



MSE values and additional metrics for EU-50 dataset

Model MSE Accuracy Precision Recall

1 hour ahead

WF-UNet 2.50e-04 0.921 0.803 0.849
Single Diffusion 2.59e-04 0.915 0.767 0.882
GED (mean) 2.02e-04 0.924 0.782 0.885
GED (postprocess)  1.99e-04 0.913 0.803 0.907

2 hour ahead

WEF-UNet 4.62e-04 0.877 0.684 0.813
Single Diffusion 4.51e-04 0.875 0.699 0.844
GED (mean) 3.59e-04 0.882 0.711 0.862
GED (postprocess)  3.40e-04 0.878 0.724 0.860

3 hour ahead

WEF-UNet 6.31e-04 0.855 0.647 0.743
Single Diffusion 6.03e-04 0.848 0.672 0.801
GED (mean) 4.92e-04 0.856 0.701 0.828
GED (postprocess)  4.65e-04 0.861 0.706 0.821

Table 2: Results comparison on the EU-50 dataset. 17
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Figure 7: Single Diffusion results for the year 2021 on EU50, depicting
significant score variations depending on the month of the year. (a) illustrates

the month-wise dissimilarity in scores for each of the three predicted hours. In

(b), we observe that the dissimilarity remains consistent across predictions
computed with Single Diffusion, GED (mean), and GED (post-process).

18



Precipitation nowcasting with generative diffusion models[9]

e Submitted to Neural Computing and Applications (NCAA)

e Pre-print available on arXiv

Precipitation nowcasting with generative diffusion models
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Denoising Diffusion Probabilistic Models (DDPM) - Details

Denoising Diffusion Probabilistic Models (DDPM) [2] posit that the
generative distribution py(z¢) follows a specific form defined as:

po(xo) = /pe(l‘o:T)dﬂ?l:T (5)

Here, the time horizon extends to 7" > 0, and py(xo.7) can be further

expressed as:

T
po(zo:r) = po(zT H (12 (6)

In this formulation, DDPM characterizes the generative process by
modeling the joint distribution over a sequence of time steps, where
po(xr) represents the initial distribution, and the subsequent terms
capture the conditional transitions from x; to x;_1 as the process evolves.
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Denoising Diffusion Probabilistic Models (DDPM) - Details

Training in diffusion models traditionally relies on a variational lower
bound of the negative log-likelihood:

— log po(xo)

< —log pg(x0)+DxiL(q(z1.7|T0)||[Po(21.7|70))

— 1o - o q(z1:7|T0)

= —log po( O)"‘Eq[l gp—e(l’o:T)/pe(JCo)}

= —logpe(z0)+E, [1og m + logpg(xo)}

= Eq| log g(z1:7|z0) —pe(oco;T)] = L(0) (7)

What sets diffusion models apart from typical latent variable models like
Variational Autoencoders (VAEs) [10, 11, 12] is that they employ a fixed,
non-trainable inference procedure denoted as ¢(z1.7|z0)-
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Denoising Diffusion Implicit Models (DDIM) - Details

In Denoising Diffusion Implicit Models (DDIM) [3], the authors
introduce a non-Markovian diffusion process defined as:

T

4o (z1:7]20) = g0 (27 |T0) H Go(t—1|xt, 20) (8)
=2

Here, the term g, (xr|zg) is described by a Gaussian distribution:
4o (z7|T0) = N (27| \/OT®0, (1 — @) - I) (9)
Additionally, the conditional distribution g, (x¢—1|z, z0) takes the form:

4o (Ti—1]2t, T0) = N(l‘t—l fho, (%0, at—1); 07 - I) (10)

with
fo, (To, 1) =

Tt —/XtTo
TR 1$o+\/1—04t1—0t A—ar
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Denoising Diffusion Implicit Models (DDIM) - Details

The choice of g(xy_1|x¢,x0) is strategically made to fulfill two critical
aspects of the DDPM diffusion process: the Gaussian nature of
q(xi—1|z¢, 0) when conditioned on z, and the ability to recover the
same marginal distribution as in DDPM, where:

Qo (xt]|20) = N (2| Ormo; (1 — ay) - . (11)

This property allows us to represent x; as a linear combination of x( and
a noise variable e; ~ N (&]0; I):

Ty = Jauzo + V1 — apey. (12)

Next, our task is to define a trainable generative process denoted as
po(xo.1), where the conditional distribution pg(x;_1|2z:) is crafted to
incorporate the structure from g, (x;—1|x¢, o). The concept is that when
provided with a noisy observation x;, the process begins by predicting zq
and then employs this prediction to derive x;_; according to equation 10.
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Denoising Diffusion Implicit Models (DDIM) - Details

In practical terms, a neural network denoted as eff) (¢, ) is trained to

effectively map a given pair of inputs, 2; and oy (representing the noise

rate), into an estimate of the noise component, €;. This estimated noise,
when added to z, facilitates the construction of the next time step, x;.

Consequently, the conditional distribution py(z:_1|x:) is approximated
as a Dirac delta function 6f(§t>, where:

Ty — V1 — ageg(xy,
3 arna) = LT —grlined, (13)

Using fét) (¢, ) as an approximation of x at timestep ¢, x;_1 is
subsequently calculated as follows:

ze1 = varg [0 a) 1 - — o} -eplmna)  (14)
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Denoising Diffusion Implicit Models (DDIM) - Details

Regarding the loss function, the term in equation 7 can be further
decomposed into the sum of the following terms [13]:

Lo=Lr+Li1+---+ Lo (15)

where

Lt = Dxi(q(z7|20) || P(27))
Ly = Dk (q(ze|2e41, 20)||po(2t|Ti41))
for1<t<T -1

Lo = —log pg(wo|z1)

This breakdown of the loss function provides a more granular perspective
on the optimization process.
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Denoising Diffusion Implicit Models (DDIM) - Details

All the aforementioned distributions take the form of Gaussians,
facilitating the calculation of their KL divergences in a closed-form
manner, following a Rao-Blackwellized approach. After a series of
manipulations, we arrive at the following formulation:

Ly =Kt ~ [1,T], xo, €|Vt |€r — e@(xt,t)|2 (16)

This expression can be interpreted as the weighted mean squared error
between the predicted noise and the actual noise at time ¢. In practice,
the weighting parameters are often omitted, as experimental evidence
suggests that the training process tends to perform better without them.
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Denoising Diffusion Implicit Models (DDIM) - Details

Algorithm 1 Training

1: repeat
2: xo ~ q(x0)
t ~Uniform(1,..,T)

3]
4 e~N(0;1)

5: xy = yJorxy + v/ 1—aze

6: Backpropagate on ||e — eg(zy, o) ||?
7: until converged
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Denoising Diffusion Implicit Models (DDIM) - Details

Sampling is an iterative process, starting from a purely noisy image
xp ~ N(0,I). The denoised version of the image at timestep ¢ is
obtained using equation 14.

Algorithm 2 Sampling

P X7 NN(O,I)
cfort=1T,..,1 do
: €= €9(Ta, 24, 1)

1

2

3

4: i’o = \/%(:Et = \}%6)

B i1 = /130 + /1T — 1€
6

- end for
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Diffusion classifier guidance

e The concept underpinning classifier guidance is as follows: the
objective is to learn the gradient of the logarithm of the conditional
density po(z:y).

e By applying Bayes' rule, this can be expressed as:

po(ylze) -pa(xt))

Po(y) (17)

Va, log pe(2ty) = Vo, log (

e Given that the gradient operator solely pertains to x;, the term
po(y) can be eliminated; after simplification, we arrive at:

Vi, logpg(4¢|y) =V, log po(z+)
+ 5V, log pe(ylz:) (18)

Here, the scalar term s assumes the role of modulating the strength
of the guidance component.
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Diffusion classifier guidance

e As elucidated in [14], one approach to guide the diffusion process
during generation entails the utilization of a classifier, denoted as
fo(ylze,t)).

e This method involves the training of a classifier f4(y|x¢,t) using a
noisy image x; to predict its corresponding class label y.

e Subsequently, the gradient V, log f4(y|x;) can be harnessed to steer
the diffusion sampling process towards the targeted conditioning
information g through adjustments to the noise prediction.

e This technique is particularly well-suited for scenarios involving
discrete labels.
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Classifier-Free Diffusion Guidance

e The concept of conditioned diffusion, devoid of reliance on an
external classifier, has been extensively explored in [6].

e This approach involves the training of both a conditional diffusion
model, denoted as €y (z+,¢,y), and an unconditional model,
denoted as €y (x4, t,0).

e In many cases, the same neural network architecture can serve both
models: during training, the class label 3 is randomly set to 0,
thereby exposing the model to both conditional and unconditional
scenarios.

e The estimated noise, represented as ép(x¢|t,y) at time step ¢,
subsequently emerges as a judiciously weighted combination of the
conditional and unconditional predictions:

o(xe,t,y) = gy, t,y) + 5 - €9y, 1) (19)
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e The network structure consists of a downsampling sequence of
layers, succeeded by an upsampling sequence, all while incorporating
skip connections linking layers of equivalent dimensions.

e Typically, the configuration of the U-Net is defined by specifying the

number of downsampling blocks and the channel count for each
block.

e The upsampling component mirrors a symmetrical pattern, and the
spatial dimensions align with the image resolution.

e The entire structure of a U-Net can be encoded in a single list (e.g.,
[32, 64, 96, 128]), denoting both the number of downsampling
blocks (in this case, 4) and the associated channel counts, which
typically increases as the spatial dimensions decrease.

e For the experiments, a U-Net configuration of [64, 128, 256, 384]
has been used, which empirically proved to be the most effective.
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Figure 8: U-net architecture (example for 32x32 pixels in the lowest
resolution). Each blue box corresponds to a multi-channel feature map. The
number of channels is denoted on top of the box. The x-y-size is provided at
the lower left edge of the box. White boxes represent copied feature maps. The
arrows denote the different operations. Image taken from [5].

40



Additional features

Description

Name Units
100m wind speed ms— 1t
Timestamp [m,d,h]

Land-sea mask dimensionless

Geopotential m*s

Wind speed of air at a height
of 100 meters above the sur-
face of the Earth, given east-
erly and northerly components u
and v the speed is obtained by
v (u? +v?).

Timestamp including month,
day, and hour of the start of the
given sequence, tile encoded into
a 96x96 array.

Proportion of land, as opposed
to ocean or inland waters in a
grid box.

Gravitational potential energy of
a unit mass, at a particular loca-
tion at the surface of the Earth,
relative to mean sea level.

Table 3: Additional features units and details.
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Single diffusion with different inputs on EU-50

Inputs MSE 1h MSE 2h MSE 3h
8 rain 2.62e-04 4.60e-04 6.21e-04
8 rain + Ism + geopot 2.60e-04 4.61e-04 6.23e-04
8 rain + Ism + geopot + time 2.60e-04 4.56e-04 6.16e-04
8 rain + Ism + geopot + time + 2.59e-04 4.51e-04 6.03e-04
2 wind speed

Table 4: Results comparison on the EU-50 dataset using different sets of

additional features with the Single Diffusion model. All sets include 8 frames
representing total precipitation (rain). Ism and geopot stand for land-sea mask
and geopotential map, respectively. time represents the timestamp embedding.
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