
Generating and counting finite FLew-chains

Guillermo Badia1 Riccardo Monego2 Carles Noguera3 Alberto Paparella4

Guido Sciavicco4

1School of Historical and Philosophical Inquiry, University of Queensland, Australia

2Department of Mathematics, University of Torino, Italy

3Department of Information Engineering and Mathematics, University of Siena, Italy

4Department of Mathematics and Computer Science, University of Ferrara, Italy

July 8, 2025

Badia, Monego, Noguera, Paparella, Sciavicco Generating and counting finite FLew -chains July 8, 2025 1 / 19



We had a very different audience in mind!
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Today’s plan

A novel geometric take on residuation and FLew-algebras

Restriction to the simplest situation
(and a little push from Ring Theory)

A characterization theorem for FLew-chains

A generating algorithm A numerical bound
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Residuation Theory

Residuated maps form the bulk of much of order theory.
There are several equivalent but very diverse takes on residuation.

Residuation

Categorical
(Adjunctions)

Combinatorial
(Latin squares)

Order-theoretic
(Galois connections)

Computational
Quasi-groups

Logical
(Lambek calculus)

We propose a new one.
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Topological setup

Definition

Let (P,≤) be a poset. A lowerset is a subset S ⊆ P such that

∀x ∈ P, if x ≤ s for some s ∈ S, then x ∈ S.

A lowerset is said to be principal if it is of the form

{g}↓ = {x ∈ P | x ≤ g},

for some g ∈ P , called the generator.

Observation

The lowersets of any poset form a topology, called the lower topology.
The principal lowersets are a basis for this topology.

Proposition

A map f : P → Q between posets is isotone (equiv. monotone) if and only if the
preimage of a lowerset is again a lowerset.
In other words, if and only if it is continuous with respect to the lower topology.
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Geometric rigidity

Guiding principle

Geometric rigidity induces algebraic structure.

As an example, consider D ⊆ C an open connected region. Then:

• C∞(D) = {f : D → R | f is smooth} is a commutative ring with zero divisors;

• O(D) = {f : D → C | f is holomorphic} is an integral domain.
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Residuation and Basic Continuity

We choose the following definition of residuated map:

Definition

A map between posets is residuated iff the preimage of a principal lowerset is again a
principal lowerset.

Given our topological setup, this calls for the following natural definition.

Definition

Let (X, TX) and (Y, TY ) be topological spaces and fix two topological bases BX and BY

for each one.
Then, a map f : X → Y is said to be basic continuous if and only if the preimage of
every element of BX is an element of BY .

Naturally, the latter notion depends on the choice of bases.

Observation

Residuated maps are exactly the basic continuous maps, with respect to principal
lowersets.

Intuitively, basic continuous maps are a more rigid form of continuous maps. This is
being studied in greater generality as well.
Hence, they have better algebraic properties.
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FLew-Algebras

Definition (Residuated operation)

A binary operation on a poset · : P × P → P is said to be a residuated operation if it is
residuated as a map between posets, where P × P is endowed with the product order.

This can also be seen through the lens of monoidal categories and monoid objects. (A
topic for another day!)

Definition (FLew-Algebra)

A FLew-algebra is a structure (A,≤, 0, 1, ·) such that:

• (A,≤, 0, 1) is a bounded lattice;

• (A, ·, 1) is a commutative monoid;

• The operation · is residuated.

BA

G Π MV

H
BL

MTL

FLew

FLew-algebras are very important, as they
comprise many (if not all) of the approaches to fuzzy logic:

• Gödel Logic, Heyting Algebras and Intuitionistic Logic;
• Product Logic;
• Chang’s MV -algebras and  Lukasiewicz Logic;
• t-norm Logics, BL Logic, MTL Logic.
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Order theory and Ring theory

There is a shy analogy between ring theory and order theory.

Ring Theory Order Theory
Ring Poset, Lattice

Boolean Ring Boolean Algebra
Ideal Order Ideal, Lowerset

Principal Ideal Principal lowerset
PID (Principal Ideal Domain)

Principal Lowerset Poset(?)

Definition (Principal Lowerset Poset)

We call a poset P a principal lowerset poset (PLP for short) if and only if every
lowerset in P is principal.

Given our definition of residuation, the best place to start is from PLPs.
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A note from Algebraic Geometry

In Algebraic Geometry/Commutative Algebra, we know we can endow each Affine
Algebraic Variety/Commutative Ring Spectrum with the Zariski Topology.

A basis for the Zariski Topology is given by principal open sets: complements of zeroes
of one single polynomial.

Df := {(x1, . . . , xn) ∈ An(k) | f(x1, . . . , xn) ̸= 0}.

A space in which every Zariski open set is principal is the affine line A1(k), which is the
simplest affine variety to begin with.
Also, here the Zariski topology reduces nothing but to the cofinite topology.

In fact, the affine line is represented by the algebra k[X], which is a PID.

Observation

In other words, PLPs can also be seen as the order-theoretic incarnation of straight lines
in geometry.
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Finite chains

But what actually is a PLP?

Theorem

The only finite PLPs are the finite chains.1

We begin our study of FLew algebras by restricting ourselves to finite chains.

Observation

Residuated Isotone

Over a PLP

With this, we obtain the following result:

1More classification of PLPs is coming!
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Finite FLew-chains

The lattice structure is predetermined, so we only have to find the multiplication.

Theorem (Characterization of finite FLew-chains)

The quintuple (Cn,≤, 0, 1, ·) is a FLew-algebra if and only if (Cn, ·) is an associative
magma and in its Cayley table:

• The first row (and column) consists only of zeros;

• The last column, read from top to bottom, consists of all the elements
0, 1, 2, . . . , n− 1, in this order;

• Every row and every column is weakly increasing;

• The table is symmetric with respect to the main diagonal.

•

•

•

•

•

•

• · 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 2 2 2 2 2
3 0 0 2 2 3 3 3
4 0 0 2 3 4 4 4
5 0 0 2 3 4 4 5
6 0 1 2 3 4 5 6
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Implementation

An open-source implementation can be found in the ManyValuedLogics submodule of the
SoleLogics.jl package (https://github.com/aclai-lab/SoleLogics.jl), a Julia
package for working with propositional, multi-modal and many-valued logics.

Figure: SoLe ecosystem.

It is also part of the much larger SoLe framework, an open-source project written in Julia
for Symbolic Learning and Reasoning leveraging multi-modal and many-valued logics.
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Implementation

FiniteFLewChain data structure:

• parametrized over the number n of elements

• characterized by the Cayley table representing the t-norm operation

• each value of the chain is represented as Int8 {0, 1, 2, . . . , n− 1}
• we only need to represent

(
n−1
2

)
elements

Algorithm Generate all weakly increasing sequences.

procedure WeaklyIncrRec(seqs, seq,min,max, l)
if l = 0 then

Push(seqs, seq) ▷ Ensure that seq is deep copied
else

for i← min,max do
Push(seq, i)
WeaklyIncrRec(seqs, seq, i,max, l− 1)
Pop(seq)

end for
return seqs

end if
end procedure

procedure WeaklyIncr(min,max, l)
return WeaklyIncrRec([], [],min,max, l)

end procedure
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Implementation

We employed Julia multithreading with shared memory, using a lock when pushing the
newly generated Cayley table to the collection of all tables to prevent data races.

Algorithm Generate all FLew-chains with n elements.

procedure GenFLewChRec(cts, ct,min,max, l, n)
wiseqs← WeaklyIncr(min,max, l)
if l = 1 then

for all wiseq ∈ wiseqs do
ct← Concatenate(ct, wiseq)
if CheckAssociativity(ct) then

Push(cts, ct)
end if

end for
else

for all wiseq ∈ wiseqs do
if isempty(ct) or IsWIByCol(wiseq, ct) then

ct← Concatenate(ct, wiseq)
GenFLewChRec(cts, ct, wiseq[2],max + 1, l− 1, n)

end if
end for

end if
return cts

end procedure

procedure GenFLewCh(n)
return GenFLewChRec([], [], 0, 1, n− 2, n)

end procedure
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Results

Usable and open-source tool that can be run on any common machine:
• Generating all finite FLew-chains for a given number of elements n ≤ 9 only requires

a few seconds on a single core execution
• Generating all finite FLew-chains with n = 10 in less than 10 minutes with a

multithreaded execution employing 4 cores (8 threads) on an i5-8250u CPU

elements chains
1 1
2 1
3 2
4 6
5 22
6 94
7 451
8 2386
9 13775

10 86417
11 590489

Table: Number of generated finite FLew-chains up to 11 elements

Also, this sequence is A030453 in the OEIS.
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Numerical estimates

We recall two combinatorial results.

Proposition (2)

Let WI(a, b; ℓ) be the set of all weakly increasing sequences of length ℓ in the range [a; b]
and N ∈ N. Then:

cardWI(a, b; ℓ) =

(
(b− a) + ℓ

ℓ

)
N∏

j=0

(
N

j

)
=

N∏
k=1

k2k−N−1.

With them, we can prove:

Theorem (Numerical estimate for the number of finite FLew-chains)

Let n ∈ N; then the number of FLew-chains with n elements is at most

b(n) =

n−1∏
k=1

k2k−n.

This is sequence A001142 on the OEIS.

2We thank professor Max Alekseyev from the George Washington University for his help with this proof.
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Conclusions and future prospects

• The idea of geometric ridigity is very powerful: residuated maps have a richer
algebraic structure than the monoid of continuous maps;

- For Mathematicians: study basic continuous maps in various topologies;

• Finite PLPs are only the first step:
- What about infinite cardinalities?
- What comes after PLPs? By mimicking Ring Theory, what about Noetherian posets,
perhaps?

PIDs ⇝ Noetherian Rings;

• The algorithm is swift, but can be improved; also, more powerful hardware is advised;
• The numerical estimate is the best so far, but it does not hold up asymptotically.

- A more accurate combinatorial proof?

• The Sole framework grows every day.
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