Generating and counting finite FL_{ew}-chains

Guillermo Badia¹ Riccardo Monego² Carles Noguera³ Alberto Paparella⁴ Guido Sciavicco⁴

¹School of Historical and Philosophical Inquiry, University of Queensland, Australia

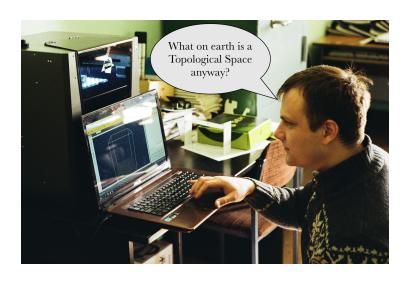
²Department of Mathematics, University of Torino, Italy

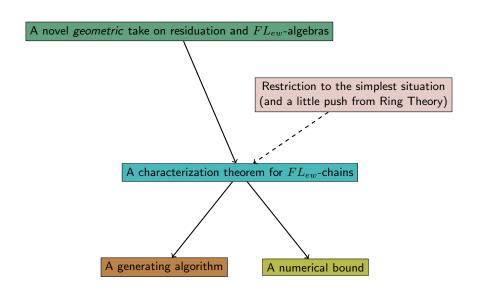
³Department of Information Engineering and Mathematics, University of Siena, Italy

⁴Department of Mathematics and Computer Science, University of Ferrara, Italy

July 8, 2025

We had a very different audience in mind!

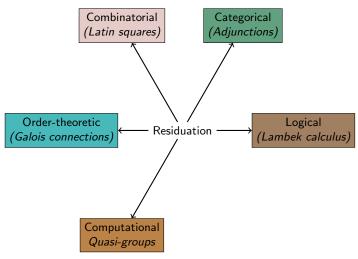




Residuation Theory

Residuated maps form the bulk of much of order theory.

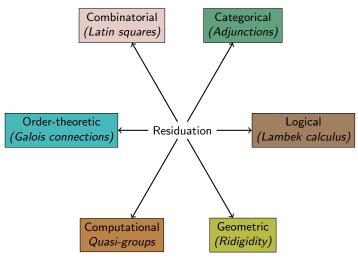
There are several equivalent but very diverse takes on residuation.



Residuation Theory

Residuated maps form the bulk of much of order theory.

There are several equivalent but very diverse takes on residuation.



We propose a new one.

Definition

Let (P,\leq) be a poset. A lowerset is a subset $S\subseteq P$ such that

 $\forall x \in P, \text{if } x \leq s \text{ for some } s \in S, \text{ then } x \in S.$

Definition

Let (P, \leq) be a poset. A **lowerset** is a subset $S \subseteq P$ such that

$$\forall x \in P, \text{if } x \leq s \text{ for some } s \in S, \text{ then } x \in S.$$

A lowerset is said to be principal if it is of the form

$$\{g\}^{\downarrow} = \{x \in P \mid x \le g\},\$$

for some $g \in P$, called the **generator**.

Definition

Let (P, \leq) be a poset. A **lowerset** is a subset $S \subseteq P$ such that

$$\forall x \in P, \text{if } x \leq s \text{ for some } s \in S, \text{ then } x \in S.$$

A lowerset is said to be principal if it is of the form

$$\{g\}^{\downarrow} = \{x \in P \mid x \le g\},\$$

for some $g \in P$, called the **generator**.

Observation

The lowersets of any poset form a topology, called the **lower topology**.

The principal lowersets are a basis for this topology.

Definition

Let (P, \leq) be a poset. A **lowerset** is a subset $S \subseteq P$ such that

$$\forall x \in P$$
, if $x \leq s$ for some $s \in S$, then $x \in S$.

A lowerset is said to be principal if it is of the form

$$\{g\}^{\downarrow} = \{x \in P \mid x \le g\},\$$

for some $g \in P$, called the **generator**.

Observation

The lowersets of any poset form a topology, called the **lower topology**.

The principal lowersets are a basis for this topology.

Proposition

A map $f: P \to Q$ between posets is **isotone** (equiv. monotone) if and only if the preimage of a lowerset is again a lowerset.

In other words, if and only if it is continuous with respect to the lower topology.

Guiding principle

Geometric rigidity induces algebraic structure.

Guiding principle

Geometric rigidity induces algebraic structure.

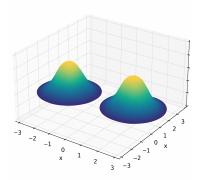
As an example, consider $D\subseteq\mathbb{C}$ an open connected region. Then:

Guiding principle

Geometric rigidity induces algebraic structure.

As an example, consider $D\subseteq\mathbb{C}$ an open connected region. Then:

• $\mathcal{C}^{\infty}(D) = \{f \colon D \to \mathbb{R} \mid f \text{ is smooth}\}\$ is a commutative ring with zero divisors;

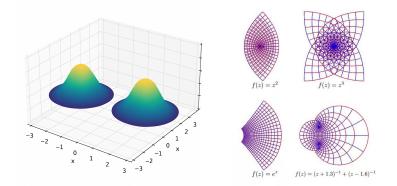


Guiding principle

Geometric rigidity induces algebraic structure.

As an example, consider $D\subseteq\mathbb{C}$ an open connected region. Then:

- $\mathcal{C}^{\infty}(D) = \{f \colon D \to \mathbb{R} \mid f \text{ is smooth}\}\$ is a commutative ring with zero divisors;
- $\mathcal{O}(D) = \{ f : D \to \mathbb{C} \mid f \text{ is holomorphic} \}$ is an integral domain.



We choose the following definition of residuated map:

We choose the following definition of residuated map:

Definition

A map between posets is **residuated** iff the preimage of a principal lowerset is again a principal lowerset.

We choose the following definition of residuated map:

Definition

A map between posets is **residuated** iff the preimage of a principal lowerset is again a principal lowerset.

Given our topological setup, this calls for the following natural definition.

Definition

We choose the following definition of residuated map:

Definition

A map between posets is **residuated** iff the preimage of a principal lowerset is again a principal lowerset.

Given our topological setup, this calls for the following natural definition.

Definition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and fix two topological bases \mathcal{B}_X and \mathcal{B}_Y for each one.

We choose the following definition of residuated map:

Definition

A map between posets is **residuated** iff the preimage of a principal lowerset is again a principal lowerset.

Given our topological setup, this calls for the following natural definition.

Definition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and fix two topological bases \mathcal{B}_X and \mathcal{B}_Y for each one.

Then, a map $f: X \to Y$ is said to be **basic continuous** if and only if the preimage of every element of \mathcal{B}_X is an element of \mathcal{B}_Y .

Naturally, the latter notion depends on the choice of bases.

Observation

We choose the following definition of residuated map:

Definition

A map between posets is **residuated** iff the preimage of a principal lowerset is again a principal lowerset.

Given our topological setup, this calls for the following natural definition.

Definition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and fix two topological bases \mathcal{B}_X and \mathcal{B}_Y for each one.

Then, a map $f: X \to Y$ is said to be **basic continuous** if and only if the preimage of every element of \mathcal{B}_X is an element of \mathcal{B}_Y .

Naturally, the latter notion depends on the choice of bases.

Observation

Residuated maps are exactly the basic continuous maps, with respect to principal lowersets.

We choose the following definition of residuated map:

Definition

A map between posets is residuated iff the preimage of a principal lowerset is again a principal lowerset.

Given our topological setup, this calls for the following natural definition.

Definition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and fix two topological bases \mathcal{B}_X and \mathcal{B}_Y for each one.

Then, a map $f: X \to Y$ is said to be basic continuous if and only if the preimage of every element of \mathcal{B}_X is an element of \mathcal{B}_Y .

Naturally, the latter notion depends on the choice of bases.

Observation

Residuated maps are exactly the basic continuous maps, with respect to principal lowersets

Intuitively, basic continuous maps are a more rigid form of continuous maps. This is being studied in greater generality as well. Hence, they have better algebraic properties.

Definition (Residuated operation)

Definition (Residuated operation)

A binary operation on a poset $: P \times P \to P$ is said to be a **residuated operation** if it is residuated as a map between posets, where $P \times P$ is endowed with the product order.

This can also be seen through the lens of **monoidal categories** and **monoid objects**. (A topic for another day!)

Definition $(FL_{ew}$ -Algebra)

Definition (Residuated operation)

A binary operation on a poset $\cdot : P \times P \to P$ is said to be a **residuated operation** if it is residuated as a map between posets, where $P \times P$ is endowed with the product order.

This can also be seen through the lens of **monoidal categories** and **monoid objects**. (A topic for another day!)

Definition $(FL_{ew}$ -Algebra)

A FL_{ew} -algebra is a structure $(A, \leq, 0, 1, \cdot)$ such that:

Definition (Residuated operation)

A binary operation on a poset $\cdot \colon P \times P \to P$ is said to be a **residuated operation** if it is residuated as a map between posets, where $P \times P$ is endowed with the product order.

This can also be seen through the lens of **monoidal categories** and **monoid objects**. (A topic for another day!)

Definition $(FL_{ew}$ -Algebra)

A FL_{ew} -algebra is a structure $(A, \leq, 0, 1, \cdot)$ such that:

• $(A, \leq, 0, 1)$ is a bounded lattice;

Definition (Residuated operation)

A binary operation on a poset $\cdot : P \times P \to P$ is said to be a **residuated operation** if it is residuated as a map between posets, where $P \times P$ is endowed with the product order.

This can also be seen through the lens of **monoidal categories** and **monoid objects**. (A topic for another day!)

Definition $(FL_{ew}$ -Algebra)

A FL_{ew} -algebra is a structure $(A, \leq, 0, 1, \cdot)$ such that:

- $(A, \leq, 0, 1)$ is a bounded lattice;
- $(A, \cdot, 1)$ is a commutative monoid;

Definition (Residuated operation)

A binary operation on a poset $\cdot : P \times P \to P$ is said to be a **residuated operation** if it is residuated as a map between posets, where $P \times P$ is endowed with the product order.

This can also be seen through the lens of **monoidal categories** and **monoid objects**. (A topic for another day!)

Definition $(FL_{ew}$ -Algebra)

A FL_{ew} -algebra is a structure $(A, \leq, 0, 1, \cdot)$ such that:

- $(A, \leq, 0, 1)$ is a bounded lattice;
- $(A, \cdot, 1)$ is a commutative monoid;
- The operation · is residuated.

Definition (Residuated operation)

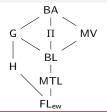
A binary operation on a poset $\cdot : P \times P \to P$ is said to be a **residuated operation** if it is residuated as a map between posets, where $P \times P$ is endowed with the product order.

This can also be seen through the lens of **monoidal categories** and **monoid objects**. (A topic for another day!)

Definition (FL_{ew} -Algebra)

A FL_{ew} -algebra is a structure $(A, \leq, 0, 1, \cdot)$ such that:

- $(A, \leq, 0, 1)$ is a bounded lattice;
- $(A, \cdot, 1)$ is a commutative monoid;
- The operation · is residuated.



 FL_{ew} -algebras are very important, as they comprise many (if not all) of the approaches to fuzzy logic:

- Gödel Logic, Heyting Algebras and Intuitionistic Logic;
- Product Logic;
- Chang's MV-algebras and Łukasiewicz Logic;
- ullet t-norm Logics, BL Logic, MTL Logic.

There is a shy analogy between ring theory and order theory.

There is a shy analogy between ring theory and order theory.

Ring Theory	Order Theory
Ring	Poset, Lattice
Boolean Ring	Boolean Algebra
Ideal	Order Ideal, Lowerset
Principal Ideal	Principal lowerset
PID (Principal Ideal Domain)	

There is a shy analogy between ring theory and order theory.

Ring Theory	Order Theory
Ring	Poset, Lattice
Boolean Ring	Boolean Algebra
ldeal	Order Ideal, Lowerset
Principal Ideal	Principal lowerset
PID (Principal Ideal Domain)	Principal Lowerset Poset(?)

Definition (Principal Lowerset Poset)

We call a poset P a principal lowerset poset (PLP for short) if and only if every lowerset in P is principal.

There is a shy analogy between ring theory and order theory.

Ring Theory	Order Theory
Ring	Poset, Lattice
Boolean Ring	Boolean Algebra
Ideal	Order Ideal, Lowerset
Principal Ideal	Principal lowerset
PID (Principal Ideal Domain)	Principal Lowerset Poset(?)

Definition (Principal Lowerset Poset)

We call a poset P a principal lowerset poset (PLP for short) if and only if every lowerset in P is principal.

Given our definition of residuation, the best place to start is from PLPs.

A note from Algebraic Geometry

In Algebraic Geometry/Commutative Algebra, we know we can endow each Affine Algebraic Variety/Commutative Ring Spectrum with the **Zariski Topology**.

A basis for the Zariski Topology is given by **principal open sets**: complements of zeroes of one single polynomial.

$$D_f := \{(x_1, \dots, x_n) \in \mathbb{A}^n(k) \mid f(x_1, \dots, x_n) \neq 0\}.$$

A space in which every Zariski open set is principal is the **affine line** $\mathbb{A}^1(k)$, which is the simplest affine variety to begin with.

Also, here the Zariski topology reduces nothing but to the cofinite topology.

A note from Algebraic Geometry

In Algebraic Geometry/Commutative Algebra, we know we can endow each Affine Algebraic Variety/Commutative Ring Spectrum with the **Zariski Topology**.

A basis for the Zariski Topology is given by **principal open sets**: complements of zeroes of one single polynomial.

$$D_f := \{(x_1, \dots, x_n) \in \mathbb{A}^n(k) \mid f(x_1, \dots, x_n) \neq 0\}.$$

A space in which every Zariski open set is principal is the **affine line** $\mathbb{A}^1(k)$, which is the simplest affine variety to begin with.

Also, here the Zariski topology reduces nothing but to the **cofinite topology**.

In fact, the affine line is represented by the algebra k[X], which is a PID.

A note from Algebraic Geometry

In Algebraic Geometry/Commutative Algebra, we know we can endow each Affine Algebraic Variety/Commutative Ring Spectrum with the **Zariski Topology**.

A basis for the Zariski Topology is given by **principal open sets**: complements of zeroes of one single polynomial.

$$D_f := \{(x_1, \dots, x_n) \in \mathbb{A}^n(k) \mid f(x_1, \dots, x_n) \neq 0\}.$$

A space in which every Zariski open set is principal is the **affine line** $\mathbb{A}^1(k)$, which is the simplest affine variety to begin with.

Also, here the Zariski topology reduces nothing but to the **cofinite topology**.

In fact, the affine line is represented by the algebra k[X], which is a PID.

Observation

In other words, PLPs can also be seen as the order-theoretic incarnation of straight lines in geometry.

Finite chains

But what actually is a PLP?

12 / 19

July 8, 2025

¹More classification of PLPs is coming!

Finite chains

But what actually is a PLP?

Theorem

The only finite PLPs are the finite chains.¹

¹More classification of PLPs is coming!

Finite chains

But what actually is a PLP?

Theorem

The only finite PLPs are the finite chains.1

We begin our study of FL_{ew} algebras by restricting ourselves to **finite chains**.

¹More classification of PLPs is coming!

Finite chains

But what actually is a PLP?

Theorem

The only finite PLPs are the finite chains.¹

We begin our study of FL_{ew} algebras by restricting ourselves to **finite chains**.

Observation

With this, we obtain the following result:

¹More classification of PLPs is coming!

Finite FL_{ew} -chains

The lattice structure is predetermined, so we only have to find the multiplication.

Theorem (Characterization of finite FL_{ew} -chains)

The quintuple $(C_n, \leq, 0, 1, \cdot)$ is a FL_{ew} -algebra if and only if (C_n, \cdot) is an associative magma and in its Cayley table:

- The first row (and column) consists only of zeros;
- The last column, read from top to bottom, consists of all the elements $0, 1, 2, \ldots, n-1$, in this order;
- Every row and every column is weakly increasing;
- The table is symmetric with respect to the main diagonal.

•	
-	
•	
•	
•	
•	
- 1	
•	
- 1	
•	

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	2	2	2	2	2
3	0	0	2	2	3	3	3
4	0	0	2	3	4	4	4
5	0	0	2	3	4	4	5
6	0	1	2	3	4	5	6

Implementation

An open-source implementation can be found in the ManyValuedLogics submodule of the SoleLogics.jl package (https://github.com/aclai-lab/SoleLogics.jl), a Julia package for working with propositional, multi-modal and many-valued logics.

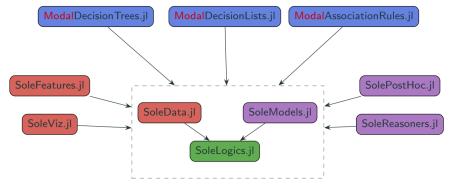


Figure: SoLe ecosystem.

It is also part of the much larger SoLe framework, an open-source project written in Julia for Symbolic Learning and Reasoning leveraging multi-modal and many-valued logics.

Implementation

FINITEFLEWCHAIN data structure:

- parametrized over the number n of elements
- characterized by the Cayley table representing the t-norm operation
- ullet each value of the chain is represented as ${
 m INT8}\ \{0,1,2,\ldots,n-1\}$
- ullet we only need to represent $\binom{n-1}{2}$ elements

Algorithm Generate all weakly increasing sequences.

```
procedure WeaklyIncrRec(seas, sea, min, max, l)
   if l=0 then
      Push(seqs, seq)

    Ensure that seq is deep copied

   else
      for i \leftarrow min, max do
         Push(seq, i)
         WeaklyIncrRec(seqs, seq, i, max, l-1)
         Pop(sea)
      end for
      return segs
   end if
end procedure
procedure WeaklyIncr(min, max, l)
   return WeaklyIncrRec([], [], min, max, l)
end procedure
```

Implementation

We employed Julia multithreading with shared memory, using a lock when pushing the newly generated Cayley table to the collection of all tables to prevent data races.

Algorithm Generate all FL_{ew} -chains with n elements.

```
procedure GenFL<sub>ew</sub> ChRec(cts, ct, min, max, l, n)
   wiseas \leftarrow WeaklyIncr(min, max, l)
   if l = 1 then
       for all wiseq \in wiseqs do
          ct \leftarrow \text{Concatenate}(ct, wiseq)
          if CHECKASSOCIATIVITY(ct) then
              Push(cts, ct)
          end if
       end for
   else
       for all wiseq \in wiseqs do
          if ISEMPTY(ct) or ISWIBYCOL(wisea, ct) then
              ct \leftarrow \text{Concatenate}(ct, wiseq)
              GENFL_{ew}CHRec(cts, ct, wiseq[2], max + 1, l - 1, n)
          end if
       end for
   end if
   return cts
end procedure
procedure GENFL_{ew}CH(n)
   return GenFL<sub>eve</sub>ChRec([], [], 0, 1, n-2, n)
end procedure
```

Results

Usable and open-source tool that can be run on any common machine:

- Generating all finite FL_{ew} -chains for a given number of elements $n \leq 9$ only requires a few seconds on a single core execution
- Generating all finite FL_{ew} -chains with n=10 in less than 10 minutes with a multithreaded execution employing 4 cores (8 threads) on an i5-8250u CPU

elements	chains		
1	1		
2	1		
3	2		
4	6		
5	22		
6	94		
7	451		
8	2386		
9	13775		
10	86417		
11	590489		

Table: Number of generated finite FL_{ew} -chains up to 11 elements

Also, this sequence is A030453 in the OEIS.

Numerical estimates

We recall two combinatorial results.

²We thank professor Max Alekseyev from the George Washington University for his help with this proof.

Numerical estimates

We recall two combinatorial results.

Proposition (2)

Let $WI(a,b;\ell)$ be the set of all weakly increasing sequences of length ℓ in the range [a;b] and $N \in \mathbb{N}$. Then:

$$\operatorname{card} \operatorname{WI}(a,b;\ell) = \begin{pmatrix} (b-a) + \ell \\ \ell \end{pmatrix} \qquad \qquad \prod_{j=0}^{N} \binom{N}{j} = \prod_{k=1}^{N} k^{2k-N-1}.$$

²We thank professor Max Alekseyev from the George Washington University for his help with this proof.

Numerical estimates

We recall two combinatorial results.

Proposition (2)

Let $WI(a,b;\ell)$ be the set of all weakly increasing sequences of length ℓ in the range [a;b] and $N \in \mathbb{N}$. Then:

$$\operatorname{card} \operatorname{WI}(a,b;\ell) = \begin{pmatrix} (b-a) + \ell \\ \ell \end{pmatrix} \qquad \qquad \prod_{j=0}^{N} \binom{N}{j} = \prod_{k=1}^{N} k^{2k-N-1}.$$

With them, we can prove:

Theorem (Numerical estimate for the number of finite FL_{ew} -chains)

Let $n \in \mathbb{N}$; then the number of FL_{ew} -chains with n elements is at most

$$b(n) = \prod_{k=1}^{n-1} k^{2k-n}.$$

This is sequence <u>A001142</u> on the OEIS.

²We thank professor Max Alekseyev from the George Washington University for his help with this proof.

 The idea of geometric ridigity is very powerful: residuated maps have a richer algebraic structure than the monoid of continuous maps;

- The idea of geometric ridigity is very powerful: residuated maps have a richer algebraic structure than the monoid of continuous maps;
 - For Mathematicians: study basic continuous maps in various topologies;

- The idea of geometric ridigity is very powerful: residuated maps have a richer algebraic structure than the monoid of continuous maps;
 - For Mathematicians: study basic continuous maps in various topologies;
- Finite PLPs are only the first step:

- The idea of geometric ridigity is very powerful: residuated maps have a richer algebraic structure than the monoid of continuous maps;
 - For Mathematicians: study basic continuous maps in various topologies;
- Finite PLPs are only the first step:
 - What about infinite cardinalities?
 - What comes after PLPs? By mimicking Ring Theory, what about Noetherian posets, perhaps?

PIDs → Noetherian Rings;

- The idea of geometric ridigity is very powerful: residuated maps have a richer algebraic structure than the monoid of continuous maps;
 - For Mathematicians: study basic continuous maps in various topologies;
- Finite PLPs are only the first step:
 - What about infinite cardinalities?
 - What comes after PLPs? By mimicking Ring Theory, what about Noetherian posets, perhaps?

PIDs → Noetherian Rings;

The algorithm is swift, but can be improved; also, more powerful hardware is advised;

- The idea of geometric ridigity is very powerful: residuated maps have a richer algebraic structure than the monoid of continuous maps;
 - For Mathematicians: study basic continuous maps in various topologies;
- Finite PLPs are only the first step:
 - What about infinite cardinalities?
 - What comes after PLPs? By mimicking Ring Theory, what about Noetherian posets, perhaps?

PIDs → Noetherian Rings;

- The algorithm is swift, but can be improved; also, more powerful hardware is advised;
- The numerical estimate is the best so far, but it does not hold up asymptotically.
 - A more accurate combinatorial proof?

- The idea of geometric ridigity is very powerful: residuated maps have a richer algebraic structure than the monoid of continuous maps;
 - For Mathematicians: study basic continuous maps in various topologies;
- Finite PLPs are only the first step:
 - What about infinite cardinalities?
 - What comes after PLPs? By mimicking Ring Theory, what about Noetherian posets, perhaps?

PIDs → Noetherian Rings;

- The algorithm is swift, but can be improved; also, more powerful hardware is advised;
- The numerical estimate is the best so far, but it does not hold up asymptotically.
 - A more accurate combinatorial proof?
- The Sole framework grows every day.