
Many-Expert Decision Trees

Guillermo Badia1 Carles Noguera2 Alberto Paparella3 Guido Sciavicco3

October 22, 2024

1School of Historical and Philosophical Inquiry, University of Queensland, Australia

2Department of Information Engineering and Mathematics, University of Siena, Italy

3Department of Mathematics and Computer Science, University of Ferrara, Italy

Introduction

Introduction

Decision Trees are undoubtedly one of the most traditional, yet powerful

algorithms in machine learning, especially when it comes to tabular data.

One of their most prominent features is easily their high interpretability,

making their behavior always clear and allowing, given a query, to get

motivation for the provided outcome.

Taking things a step further, each decision tree has a logical counterpart

consisting of a set of (propositional) logical formulas. Under this view,

one can tie algorithms for decision tree extraction to specific logics.

1

Introduction

Decision trees have been enhanced in the past following two directions:

• employing Fuzzy Logics, with the main objective of better-treating

uncertainty in the data, and

• employing Modal Logic [4, 6], also allowing the application of

decision trees to non-tabular data.

We propose a novel approach further generalizing the first direction,

resorting to many-valued logics. Our aim is to model situations in

which different experts can have different opinions on the same data.

2

Table of contents

1. Introduction

2. Machine Learning 101

3. Decision Trees

4. Fuzzy Decision Trees

5. Many-Expert Decision Trees

6. Conclusions and Future Work

3

Machine Learning 101

What is Machine Learning?

Machine Learning is an optimization process:

1. define a model (decision trees, neural networks, . . .) for the task to

be solved, depending on a set of parameters Θ

2. define a performance metric (mean squared errors, cross-entropy,

cosine distance, . . .), some error measure to evaluate the model

3. tune the parameters Θ to minimize the error on a training set

Models can be used to acquire knowledge on the input data, finding

clusters, making correlations, . . .

Then, they can be used to make predictions on new data.

4

Why Learning?

Why learning?

• The tuning of parameters is based on observations (training set).

We learn from our past experiences.

• We use iterative techniques to progressively approximate the

results, and this can be understood as a form of learning process.

There are different types of learning tasks:

• supervised learning (classification, regression)

• unsupervised learning (clustering, autoencoding)

• reinforcement learning (learning long-term gains through rewards)

5

Supervised Learning

Training set: a set of training examples

< x (i), y (i) >

where

• x (i) ∈ X (set of inputs)

• y (i) ∈ Y (set of outputs)

• i is the instance of the training sample

Problem: learn the function mapping x (i) to y (i).

• Y discrete: classification problem (class prediction)

• Y continuous: regression problem (value prediction)

6

Hypothesis Space

Machine learning techniques require a commitment to a given function

space H, inside which we look for the function that provides the best

approximation for the training set.

H reflects the way we are modeling data.

Example: Training set = {< 2, 3 >,< 3, 4 >}

H = linear functions. We have an exact solution: y = x + 1.

Adding the instance < 1, 0 >, the model is not exact anymore.

Solution:

• we keep the model and content ourselves with approximate answers

• we change the model, for instance taking quadratic functions:

y = −x2 + 6x − 5.

7

No Free Lunch

Theorem (No Free Lunch)
Even after the observation of the

frequent or constant conjunction of

objects, we have no reason to draw

any inference concerning any object

beyond those of which we have had

experience.
Figure 1: David Hume.

Supposing that all hypotheses have the same probability, there is no

reason to prefer one to the other: the choice of the hypothesis (or model)

must be driven by inductive biases, otherwise, no learning is possible.

The learning biases are the set of assumptions that the model uses to

predict outputs for new inputs.

8

An Example: Occam’s razor

Pluralitas non est ponenda sine necessitate.

(Plurality should not be posited without necessity.)

I.e., the simplest solution consistent with

observation is to be preferred (lex parsimoniae).

Figure 2: William

of Occam.

Occam’s razor is used by decision trees.

9

Features

Any information relative to a datum that describes some of its relevant

properties is called a feature.

Features are the input of the learning process: learning is highly sensible

to the choice of features.

Choosing good features is difficult (requires good domain knowledge)!

Medical diagnosis User profiling Weather forecasting

Symptoms Demographic data Outlook

Patient condition Personal interests Temperature

Medical record Social communities Humidity

Result of exams Lifestyle Wind

.

Table 1: Examples of features.

10

Components trained to learn

• Machine Learning approach:

compute by hand good

features, and apply a simple

and well-understood learning

algorithm.

• Deep Learning approach:

supply raw data and let the

machine the burden to

synthesize good features

(internal representations). Figure 3: Components trained to

learn. Image taken from [9].

11

Relations between research areas

• Knowledge-based systems: take an expert, ask him how he solves

a problem, and try to mimic his approach by means of logical rules.

• Machine Learning: take an expert, ask him which are the relevant

features to solve a given problem, let the machine learn the mapping.

• Deep Learning: get rid of the expert.

Figure 4: Relations between research areas. Image take from [9].

12

Recap

Today we will focus on:

• the Machine Learning approach

• Supervised Learning (our training data is labeled)

• Classification Tasks

Machine Learning approach: take an expert, ask him which are the

relevant features to solve a given problem, let the machine learn the

mapping.

Question: what if we ask more than one expert?

Problems: each expert can consider different features to be more

relevant than others, interpret numerical values in different ways, or even

know more about some features and less about others.

13

Decision Trees

Decision Trees in the literature

The first decision tree algorithm, ID3, was first

introduced by Ross Quinlan in 1979 [1, 11].

It only allowed discrete features.

Leo Breinman made it possible to work also with

continuous features proposing CART in 1984 [3].

Quinlan refined his algorithm as C4.5 in 1993 [12]

introducing pruning and support for missing values.

Its last version C5.0 is only commercially sold.

In 2001, Breinman proposed an ensemble approach

to decision trees, namely Random Forests[2].

The problem of learning an optimal decision tree

from a given dataset is known to be NP-hard [13]

Figure 5:

Ross Quinlan.

Figure 6: Leo

Breinman.

14

Decision Trees: an example

A good day to play tennis?

F : Outlook × Temp × Humidity ×Wind → PlayTennis?

• Every node tests a feature Xi

• Each branch corresponds to one of the possible discrete values of Xi

• Every leaf predicts the answer Y (or a probability P(Y |X))

Outlook

Humidity

No

High

Yes

Normal

Sunny

Yes

Overcast

Wind

No

Strong

Yes

Weak

Rain

Figure 7: An example of a decision tree for classifying whether a person should

play tennis based on outlook, humidity, wind, and temperature.

15

How to build a Decision Tree

Problem configuration:

• Input set X

every instance x ∈ X is a vector of features of the following kind:

< Outlook = rain,Temp = hot,Humidity = high,Wind = weak >

• Target function f : X → Y

Y takes discrete values (booleans)

• Hypothesis Space H = {h|h : X → Y } (no restriction)

• we try to model each h ∈ H with a decision tree

• each instance x defines a path in the tree leading to a leaf labeled

with y

16

Play-tennis training set

Outlook Temp Humidity Wind Play tennis

Sunny Hot High Weak No

Sunny Hot High Strong No

Overcast Hot High Weak Yes

Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rain Mild High Strong No

Table 2: Play-tennis training set.

17

Top-down inductive construction

Main loop:

1. assign to the current node the “best” feature Xi

2. create a child node for every possible value of Xi

3. for every child node, if all the examples in the training set associated

with the node have the same label y , mark the node (leaf) with

label y , otherwise iterate from point 1

Problem: what is the “best” feature?

A [29+,35-]

[21+,5-]

T

[8+,30-]

F

B [29+,35-]

[18+,33-]

T

[11+,2-]

F

Figure 8: Splitting over different features A and B. n+ represents the number

of instances labeled as y , m- represents the number of instances not labeled as

y . For simplicity, let’s assume a binary classification problem.

18

Entropy

The entropy H(X) of a random variable X is

H(X) = −
n∑
i=i

P(X = i)log2P(X = i)

where n is the number of possible values of X .

Figure 9: Entropy measures the degree of impurity of the information. It is

maximal when X is uniformly distributed over all values, and minimal (0) when

it is concentrated on a single value.

19

Entropy

Entropy is the average amount of information produced by a stochastic

data source.

Information is associated with the probability of each data (the

“surprise” carried by the event):

• an event with probability 1 carries no information: I (1) = 0

• given two independent events with probabilities p1 and p2 their joint

probability is p1p2 but the information acquired is the sum of the

information of the two independent events, so

I (p1p2) = I (p1) + I (p2)

It is hence natural to define

I (p) = −log(p)

20

Entropy

Example: suppose to have n events with the same probability. What is

the entropy (i.e., the amount of information) carried out by each event?

H(X) = −
n∑

i=1

P(X = i)log2P(X = i)

= −
n∑

i=1

1

n
log2

(
1

n

)
= log(n)

If events are not equiprobable, we can do better!

21

Information gain

Entropy of X :

H(X) = −
n∑
i=i

P(X = i)log2P(X = i)

Conditional Entropy of X given a specific Y = v :

H(X |Y = v) = −
n∑

i=1

P(X = i |Y = v)log2P(X = i |Y = v)

Conditional Entropy of X given Y (weighted average over all m

possible values of Y):

H(X |Y) =
m∑

v=1

P(Y = v)H(X |Y = v)

Information Gain between X and Y :

I (X ,Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

22

Back to our example: what is the “best” feature?

Let us measure the entropy reduction of the target variable Y due to

some feature X , that is, the information gain I (Y ,X).

A [29+,35-]

[21+,5-]

T

[8+,30-]

F

B [29+,35-]

[18+,33-]

T

[11+,2-]

F

H(Y) = −(29/64) · log2(29/64) − (35/64) · log2(35/64) = .994

H(Y |A = T) = −(21/26) · log2(21/26) − (5/26) · log2(5/26) = .706

H(Y |A = F) = −(8/38) · log2(8/38) − (30/38) · log2(30/38) = .742

H(Y |A) = .706 · 26/64 + .742 · 38/64 = .726

I (Y ,A) = H(Y) − H(Y |A) = .994 − .726 = .288

For B, we get H(Y |B) = .872 and I (Y ,B) = .122. Hence, A is better!

23

Gini’s impurity

Gini’s impurity measures the probability that a generic element gets

misclassified according to the current classification.

Given m categories, let fi be the fraction of data with label i . This is

equal to the probability that an input belongs to the category i . The

probability of misclassifying it is hence 1− fi , and its weighted average on

all categories is just Gini’t impurity, that is:

IG (f) =
m∑
i=1

fi (1− fi) =
m∑

1=1

(fi − f 2
i) =

m∑
i=1

fi −
m∑
i=1

f 2
i = 1−

m∑
i=1

f 2
i

This metric is applied to every child node, and values are summed in a

weighted way (similarly to the definition of information gain) to get a

measure of the quality of a feature.

24

Back to our example: what is the “best” feature?

Let us evaluate the split using Gini’s impurity.

A [29+,35-]

[21+,5-]

T

[8+,30-]

F

B [29+,35-]

[18+,33-]

T

[11+,2-]

F

For the feature A:
IG (A = T) = 1 − (21/26)2 − (5/26)2 = .310

IG (A = F) = 1 − (8/38)2 − (30/38)2 = .332

IG (A) = .310 · 26/64 + .332 · 38/64 = .323

For the feature B:
IG (B = T) = 1 − (18/51)2 − (33/51)2 = .456

IG (B = F) = 1 − (11/13)2 − (2/13)2 = .260

IG (B) = .456 · 51/64 + .260 · 13/64 = .416

Hence, A is better (lower impurity)!

25

The continuous case

When features are continuous, we make decisions based on thresholds:

A < Θ

T F A<Θ A≥Θ

• we compare thresholds with information gain

• how to choose candidate thresholds?

• sample at discrete intervals

• order the test set w.r.t. the given feature and choose threshold at

the average of two consecutive data

26

Overfitting

Let us consider the error of the hypothesis h:

• on the training set, errortrain(h)

• on the full data set D, errorD(h)

We say that h overfits the training set if there exists another hypothesis

h′ such that

errortrain(h) < errortrain(h
′)

but

errorD(h) > errorD(h
′)

Problem: we do not know D!

Divide the available data into two disjoint sets:

• training set to be used to choose a candidate h

• validation set to be used to assess the accuracy of h

27

Overfitting and model complexity

Figure 13: A visual representation of the relation between overfitting and

model complexity: one should always aim for a model that can effectively

approximate the training set while also generalizing to new data.

28

Avoid overfitting with decision trees

Two approaches:

• early stopping: terminate the construction of the tree as soon as

the classification improvement is not statistically significative (e.g.,

the information gain is below some threshold)

• post-pruning: develop the full and exact decision tree for the

training set, and then proceed to backward prune it, repeating the

following operation until further pruning does not improve accuracy:

1. for any subtree, compute the impact of its removal on the

classification accuracy on the validation set

2. greedily perform pruning of the subtree that optimizes accuracy

29

Decision Trees and Propositional Logic

A decision tree can be easily translated into a set of logical formulas!

Outlook

Humidity

No

High

Yes

Normal

Sunny

Yes

Overcast

Wind

No

Strong

Yes

Weak

Rain

Let’s tie each possible value for each feature to a propositional variable:

P = {OSunny ,OOvercast ,ORain,HHigh,HNormal ,WStrong ,WWeak}

The decision tree above corresponds to the following set of formulas Γ:

φYes := (OSunny ∧ HNormal) ∨ OOvercast ∨ (ORain ∧WWeak)

φNo := (OSunny ∧ HHigh) ∨ (ORain ∧WStrong)

30

Decision Trees and Propositional Logic

Γ:

φYes := (OSunny ∧ HNormal) ∨ OOvercast ∨ (ORain ∧WWeak)

φNo := (OSunny ∧ HHigh) ∨ (ORain ∧WStrong)

Each instance x ∈ X can be translated into a logical model m in a

similar way, assigning a truth value to each propositional variable

accordingly. Then, the classification problem can be solved simply by

checking which formula φy ∈ Γ is satisfied by the model m, i.e., m |= φy .

Examples:

• x9 = {Sunny ,Cool ,Normal ,Weak} → m9 = {T ,F ,F ,F ,T ,F ,T},m9 |= φYes

• x14 = {Rain,Mild ,High,Strong} → m14 = {F ,F ,T ,T ,F ,T ,F},m14 |= φNo

Note: formulas are mutually exclusive (i.e., each model m satisfies one

and only one formula φy ∈ Γ).

31

Pros and Cons of Decision Trees

Pros:

• easy to understand: simple logical rules, trees can be visualized

• little or no data preprocessing is required

• very low prediction cost

• can be used with both discrete and continuous features

Cons:

• high risk of overfitting

• selection of features quite unstable

• easy to build strongly unbalanced trees, especially if a class is

dominant it can be useful to pre-balance the dataset

32

Fuzzy Decision Trees

Fuzzy Decision Trees in the literature

Fuzzy decision trees are an extension of traditional decision trees that

incorporate fuzzy logics to handle uncertainty and imprecision in data,

where decisions must account for various degrees of truth.

There are two main strategies for constructing a fuzzy decision tree:

• synthesize a tree from a user-fuzzified dataset (FuzzyID3 [15, 10],

FuzzyC4.5 [5])

• fuzzify an already learned decision tree (FuzzyCART [14])

Dataset

Fuzzified Dataset Decision Tree

Fuzzy Decision Tree Fuzzy Decision Tree

Figure 14: Strategies to construct a Fuzzy Decision Tree from the literature.

33

Fuzzy Logics and Fuzzy Sets

Unlike classical binary logic where variables are either true or false, fuzzy

logics allow for degrees of truth t ∈ R, t ∈ [0, 1].

Similarly, while crisp sets have clear boundaries (either an element

belongs to the set or not), fuzzy sets allow partial membership.

Each variable is given a membership value ranging between 0 and 1,

representing the degree to which it belongs to a fuzzy set.

Example: in a fuzzy set of TempHot , a temperature of 30°C might have

a membership value of 0.7, indicating it’s somewhat hot.

34

Membership Functions

Membership functions define how each point in the input space is

mapped to a membership value between 0 and 1.

Common membership functions include:

• Triangular ∆x,y ,z

• Trapezoidal Tx,y ,z,w
• Gaussian Φν,σ.

10 20 30 40 50

0.5

1

x

µ(x) ∆0,5,10

T5,10,20,25

Φ30,7.5

Figure 15: Example of different membership functions, normalized in [0,1].

35

Play-tennis training set (revised)

Temp (°C) Humidity (%) Wind (km/h) Play tennis

21.1 65 8.0 Yes

22.2 68 12.9 Yes

20.0 80 19.3 No

23.9 90 11.3 No

26.7 85 16.1 No

25.6 75 22.5 No

29.4 60 32.2 Yes

32.2 70 16.1 Yes

Table 3: Play-tennis training set revised (considering continuous rather than

discrete features, and dropping the Outlook feature).

36

Decision Trees: an example (revised)

Yes

Wind≤16.1

No

Wind>16.1

Humidity≤70

No

Humidity>70

Temp≤23.9

No

Wind≤24.1

Yes

Wind>24.1

Temp>23.9

Figure 16: An example of a decision tree for classifying whether a person

should play tennis based on temperature, humidity, and wind conditions.

37

Fuzzy Decision Trees: an example

Yes

Wind≤16.1,∆5,12,19

No

Wind>16.1,∆15,25,35

Humidity≤70,∆32,52,72

No

Humidity>70,∆65,85,95

Temp≤23.9,∆0,12,24

No

Wind≤24.1,∆6,16,26

Yes

Wind>24.1,∆23,29,35

Temp>23.9,∆23,30,37

Figure 17: An example of a fuzzy decision tree for classifying whether a person

should play tennis based on temperature, humidity, and wind conditions.

Specifically, the decision tree in Fig. 16 has been fuzzified by learning the

parameters for the triangular membership functions.

38

How to interpret a Fuzzy Decision Tree

We have two main strategies for interpreting a fuzzy decision tree:

• Take at each step the decision that gives the higher degree of truth

• Fully evaluate all branches using the t-norm · associated with the

fuzzy logic, and choosing the branch with the higher degree of truth

Fuzzy logics offer different t-norms, given two real values x , y ∈ [0, 1]:

• in Gödel logic, x · y = min{x , y}
• in Lukasiewicz logic, x · y = max{0, x + y − 1}
• in Product logic, x · y = xy

Note: one could also think of a third, hybrid strategy, e.g., iteratively

evaluating a subtree of a specified height, and then choosing the branch

with the higher degree of truth.

39

Fuzzy Decision Trees and Fuzzy Propositional Logic

As before, we can translate a fuzzy decision tree into a set of formulas Γ:

Yes

Wind≤16.1,∆5,12,19

No

Wind>16.1,∆15,25,35

Humidity≤70,∆32,52,72

No

Humidity>70,∆65,85,95

Temp≤23.9,∆0,12,24

No

Wind≤24.1,∆6,16,26

Yes

Wind>24.1,∆23,29,35

Temp>23.9,∆23,30,37

φYes(x) :=(Temp≤23.9 · Humidity≤70 ·Wind≤16.1) ∨ (Temp>23.9 ·Wind>24.1)

φNo(x) :=(Temp≤23.9 · Humidity≤70 ·Wind>16.1)∨

(Temp≤23.9 · Humidity>70) ∨ (Temp>23.9 ·Wind≤24.1)

40

Fuzzy Decision Trees and Fuzzy Propositional Logic

Γ:

φYes(x) :=(Temp≤23.9 · Humidity≤70 ·Wind≤16.1) ∨ (Temp>23.9 ·Wind>24.1)

φNo(x) :=(Temp≤23.9 · Humidity≤70 ·Wind>16.1)∨

(Temp≤23.9 · Humidity>70) ∨ (Temp>23.9 ·Wind≤24.1)

Each instance x ∈ X can be translated in a logical model m in assigning

a truth value to each propositional variable according to the respective

membership function. Then, the classification problem can be solved

simply by checking which formula φy ∈ Γ gives the highest truth value.

Example:

• x7 = {29.4, 60, 32.2}
• φYes(x

7) := (0 · 0.4 · 0) ∨ (0.9 · 0.25)
• φNo(x

7) := (0 · 0.4 · 0.1) ∨ (0, 0) ∨ (0.9, 0)

• Regardless of which t-norm we are using, φYes(x
7) > φNo(x

7)

41

Pros and Cons of Fuzzy Decision Trees

Pros:

• better treatment of uncertainty in the data

• better treatment of unclear boundaries between data

• we can postpone judgment on splitting (what if the “best” feature

was not the best?)

Cons:

• common membership functions can be too drastic on branches (a

membership value of 0 “kills” the branch)

• membership functions give a unified judgment: it is like we are only

considering one expert or a decision agreed on by a group of experts

• what if we want to consider each expert’s opinion separately?

42

Many-Expert Decision Trees

Modeling Many-Expert situations

We would like to:

• represent degrees of truths representing opinions of various experts

(i.e., some could be non-comparable → we need a partial order)

• represent hierarchies between experts (i.e., some experts may be

specialized in some areas and their opinions should be more valuable)

• find a good way to aggregate values on different features (similarly

to the t-norm in the fuzzy case)

In his seminal work, Melvin Fitting proposed the

use of Heyting Algebras (i.e., the algebraic

counterpart of Intuitionistic Logic) to model

these kinds of situations [7, 8].

Problem: intuitionistic logic does not generalize all

fuzzy logics (only Gödel’s logic)! Figure 18:

Melvin Fitting

43

Partial Taxonomy of well-known Many-Valued Logics

Note: fuzzy logics are all many-valued logics in which the corresponding

algebra is a chain (i.e., the order is total).

CL

 L Π G

BL IL

MTL

FLew

Figure 19: Some families of Many-Valued logics: CL is the classical logic; L, Π

and G are Lukasiewich, Product and Göedel logics all belong to the family of

Base Fuzzy Logics (BL); IL is the Intuitionistic Logic; FLew is the first logic

generalizing both BL and IL logics.

44

FLew -Algebra to the rescue

An FLew−Algebra is an algebra A = (A,∨,∧, ·,→,⊥,⊤), where

• (A,∨,∧,⊥,⊤) is a bounded lattice with top element ⊤ and

bottom element ⊥ → the partial order

• (A, ·,⊤) is a commutative monoid → the t-norm

• The residuation property holds: x · y ⪯ z iff x ⪯ y → z

Property: x · y ⪯ x ∧ y

If A is also a distributive lattice (i.e., · and ∧ are the same operation,

entailing distributivity of ∧ over ∨), A is called an Heyting algebra.

One can also define another commutative monoid (A,+,⊥) (co-t-norm).

45

FLew -Algebras: an example

(1,1,1)

.

.

.(0.72,0.803,0.67). . .

. . .(0.45,0.37,0.51).

.

.

(0,0,0)

Figure 20: Lattice structure for A

with 3-tuples.

A = (A,∨,∧, ·,→, (0, . . . , 0), (1, . . . , 1))

is an FLew -Algebra where:

• (A,∨,∧, (0, . . . , 0), (1, . . . , 1)) is a
bounded lattice with top element

(1, . . . , 1) and bottom element

(0, . . . , 0) and ∨ (resp. ∧) defined
as the ∨ (resp. ∧) between each

member of each tuple.

• (L, ·, (1, . . . , 1)) is a commutative

monoid such that, given two

n-tuples, returns the elementwise

product between them.

46

How to build a Many-Experts Decision Tree

• Fix a number n of experts

• Define an FLew -Algebra A = (A,∨,∧, ·,→, (0, . . . , 0), (1, . . . , 1)

where A is the set of all n-tuples, and ∨ and ∧ are defined as:

(x1, . . . , xn) ∨ (y1, . . . , yn) = (x1 ∨ y1, . . . , x1 ∨ yn)

(x1, . . . , xn) ∧ (y1, . . . , yn) = (x1 ∧ y1, . . . , x1 ∨ yn)

• Define a proper t-norm for the algebra (e.g., the elementwise

product between two n-tuples)

• Divide the available data into n + 2 disjoint sets:

• a training set and a validation set to build a decision tree

• n sets to learn the parameters for a specified membership function

(e.g., Gaussian) for each expert for each decision on each feature

47

Different Membership Functions for different Experts

5 10 15 20 25

0.5

1

a

Φ
Temp≤23.9
ν,σ Temp≤23.9[1], Φ10,1

Temp≤23.9[2], Φ12.5,0.75

Temp≤23.9[3], Φ15,1.5

Figure 21: Example of different membership functions representing 3 different

experts’ opinions using the strategy above (i.e., learning the parameters for a

Gaussian membership function) for Temp≤23.9.

48

Many-Experts Decision Trees: an example

Yes

Wind≤16.1,Φ
1,Φ2,Φ3

No

Wind>16.1,Φ
1,Φ2,Φ3

Humidity≤70,Φ
1,Φ2,Φ3

No

Humidity>70,Φ
1,Φ2,Φ3

Temp≤23.9,Φ
1,Φ2,Φ3

No

Wind≤24.1,Φ
1,Φ2,Φ3

Yes

Wind>24.1,Φ
1,Φ2,Φ3

Temp>23.9,Φ
1,Φ2,Φ3

Figure 22: An example of a many-expert decision tree for classifying whether a

person should play tennis based on temperature, humidity, and wind conditions,

obtained from the decision tree in Fig. 7 learning the parameters of a Gaussian

membership function for each decision on each feature for each expert.

49

How to interpret a Many-Expert Decision Tree

We can translate a many-expert decision tree to a set of formulas:

φYes(x) :=(Temp≤23.9 · Humidity≤70 ·Wind≤16.1) ∨ (Temp>23.9 ·Wind>24.1)

φNo(x) :=(Temp≤23.9 · Humidity≤70 ·Wind>16.1)∨

(Temp≤23.9 · Humidity>70) ∨ (Temp>23.9 ·Wind≤24.1)

t-norm: given two n-tuples, return the elementwise product between

them, i.e.,

·((x1, . . . , xn), (y1, . . . , yn)) = (x1 × y1, . . . , xn × yn)

Example:

• x such that Temp≤23.9(x) = (0, 0, 0),Temp>23.9(x) = (0.8, 0.5, 0.6),

Wind≤24.1(x) = (0.5, 0.5, 0.6) and Wind>24.1(x) = (0.4, 0.3, 0.5)

• φYes(x) := (0.4, 0.3, 0.5)

• φNo(x) := (0.32, 0.15, 0.3)

• Since (0.4, 0.25, 0.36) ≻ (0.32, 0.15, 0.3), we can play!

50

Conclusions and Future Work

Conclusions and Future Work

Taking inspiration from the literature on fuzzy decision trees, we

proposed a novel approach, namely many-experts decision trees, to

take different experts’ opinions on the same features into account.

We think the proposed approach to be quite general, as it extends the

fuzzy decision tree approach (i.e., one only has to consider one expert

and use the t-norm of the chosen fuzzy logic) and highly parametrizable

(using the elementwise product as a t-norm was merely an example).

On the other hand, we think that a higher number of data would be

needed for a good fit of these models when compared to their crisp or

fuzzy counterparts, and we also expect a higher complexity both in the

learning and the classification steps.

We think that using a hybrid technique when classifying new instances

(i.e., exploring subtrees) might be a good tradeoff.

51

Conclusions and Future Work

Looking at the future of this research, we first and foremost want to

implement this algorithm to better understand its properties and address

its performance when compared to classical and fuzzy approaches.

This will be done as part of an open-source project aimed at

representing, reasoning, and learning from structured and unstructured

data, namely Sole.jl (Symbolic learning), developed in the Julia

programming language.

Furthermore, we want to extend this kind of approach to the modal case,

allowing to work also with non-tabular data (e.g., spatio-temporal data,

audio, images, . . .), towards many-expert modal decision trees!

52

Questions?

52

References i

Discovering rules by induction from large collections of examples.

Expert systems in the micro electronics age, 1979.

L. Breiman.

Random forests.

Machine Learning, 45:5–32, 2001.

L. Breiman.

Classification and regression trees.

Routledge, 2017.

A. Brunello, G. Sciavicco, and I. Stan.

Interval temporal logic decision tree learning.

In Proc. of the 16th European Conference on Logics in Artificial

Intelligence (JELIA), volume 11468 of LNCS, pages 778–793.

Springer, 2019.

53

References ii

M. E. Cintra, M. C. Monard, and H. A. Camargo.

FuzzyDT—a fuzzy decision tree algorithm based on C4.5.

In Proc. of the Brazilian Congress on Fuzzy Systems, pages 199–211,

2012.

D. Della Monica, G. Pagliarini, G. Sciavicco, and I. Stan.

Decision trees with a modal flavor.

In Proc. of the 21st International Conference of the Italian

Association for Artificial Intelligence (AIxIA), number 13796 in

LNCS, pages 47 – 56. Springer, 2023.

M. Fitting.

Many-valued modal logics.

Fundamenta Informaticae, 15(3-4):235–254, 1991.

54

References iii

M. Fitting.

Tableaus for many-valued modal logic.

Studia Logica, 55(1):63–87, 1995.

I. Goodfellow.

Deep learning, 2016.

C. Z. Janikow.

Fuzzy decision trees: issues and methods.

IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 28(1):1–14, 1998.

J. Quinlan.

Induction of decision trees.

Machine learning, 1:81–106, 1986.

55

References iv

J. Quinlan.

C4. 5: programs for machine learning.

Elsevier, 2014.

R. Rivest.

Learning Decision Lists.

Machine Learning, 2(3):229–246, 1987.

J.-S. R.Jang.

Structure determination in fuzzy modeling: a fuzzy CART

approach.

In Proceedings of 1994 IEEE 3rd international fuzzy systems

conference, pages 480–485. IEEE, 1994.

56

References v

M. Umanol, H. Okamoto, I. Hatono, H. Tamura, F. Kawachi,

S. Umedzu, and J. Kinoshita.

Fuzzy decision trees by fuzzy ID3 algorithm and its application

to diagnosis systems.

In Proc. of 3rd IEEE International Fuzzy Systems Conference, pages

2113–2118. IEEE, 1994.

57

	Introduction
	Machine Learning 101
	Decision Trees
	Fuzzy Decision Trees
	Many-Expert Decision Trees
	Conclusions and Future Work

