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Introduction



Motivation

• Let’s start with an example:

• Patient exhibits symptoms of “depressed mood” and “insomnia”
• Symptoms:

• Vary in intensity over time

• Meet during certain intervals

• Need to model:

• Degrees of symptom severity

• Temporal relationships between symptoms

• Real-world scenarios involve degrees of “truth”, uncertainty,

and temporal information
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Limitations of Classical Logic

• Traditional binary logic is insufficient for modeling such complexities

• Binary truth values (true or false)

• Cannot represent partial truths or degrees of certainty
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Many-Valued Logics

• Handle partial truths and uncertainty

• Extend beyond the binary truth values of classical logic

• Examples:

• Fuzzy logics:

•  Lukasiewicz logic

• Gödel logic

• Product logic

• Intuitionistic logic
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Interval Temporal Logic

• Useful for modeling temporal relationships between events

• Focuses on reasoning over time intervals rather than time points

• Uses Allen’s interval relations:

• After, Later, Begins, Ends, During, Overlaps.
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Many-Valued Interval Temporal Logic

• Objective: Model graded truths over time intervals

• Challenges:

• Integrating many-valued truth with temporal relations

• Developing reasoning systems to handle complexity
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Our Contribution

• A sound and complete tableau system for many-valued interval

temporal logic

• Based on FLew-algebras to handle graded truth values

• Open-source implementation for real-world applicability
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Preliminaries



Halpern and Shoham’s Interval Temporal Logic (HS)

• HS is a modal logic for reasoning about time intervals

• Uses modalities corresponding to Allen’s interval relations

• Allows expression of temporal relationships between intervals

• Widely used in temporal reasoning, representation, and planning

within AI

(a) Joseph Halpern. (b) Yoav Shoham.
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Allen’s Interval Relations

relation definition example

x y

w z

w z

w z

w z

w z

w z

after RA([x , y ], [w , z]) = = (y ,w)

later RL([x , y ], [w , z]) = < (y ,w)

begins RB([x , y ], [w , z]) = = (x ,w)∧ < (z, y)

ends RE ([x , y ], [w , z]) = < (x ,w)∧ = (y , z)

during RD([x , y ], [w , z]) = < (x ,w)∧ < (z, y)

overlaps RO([x , y ], [w , z]) = < (x ,w)∧ < (w , y)∧ < (y , z)

Table 1: Allen’s interval relations.
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Limitations of Classical HS

• HS is based on classical (binary) logic

• Propositions and temporal relations are either true or false

• Cannot handle:

• Graded truths (partial truth values)

• Uncertainty or imprecision

• Inadequate for modeling real-world scenarios
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FLew-Algebras

• FLew-algebras [6]

A = ⟨A,∩,∪, ·,+, 0, 1⟩

are defined over bounded integral commutative residuated
lattices

• A is the algebra’s domain

• ⟨A,∩,∪, 0, 1⟩ represents a bounded complete lattice with upper

bound 1 and lower bound 0

• ⟨A,⪯⟩ corresponds to its lattice-ordered set (α ⪯ β iff α = α ∩ β)
• ⟨A, ·, 1⟩ and ⟨A,+, 0⟩ are commutative monoids, namely t-norm

and t-co-norm, with both operations being monotone for ⪯ (if

γ ⪯ α and δ ⪯ β, then γ · δ ⪯ α · β and γ + δ ⪯ α+ β)

• We also define an implication operation ↪→

α ↪→ β = sup{γ | α · γ ⪯ β}.

• A is a chain if ⪯ is a total order; standard if A = [0, 1] ⊂ R; finite

if A is finite. We will focus on finite FLew -algebras.
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Relation to Other Algebras

• FLew-algebras encompass several known algebras:

• Gödel algebras

• MV algebras

• Product algebras

• Heyting algebras

• Generalization allows for unified treatment

• Visual hierarchy:
BA

G [1] Π [5] MV [2, 7]

H [3] BL [4]

FLew [6]

Figure 2: A partial taxonomy of well-known truth value algebras.
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Example: Simple FLew-Algebra (G3)

• Set of truth values: A = {0, α, 1} with 0 ≺ α ≺ 1

• Operations defined as:

• t-norm (·):
a · b = min(a, b)

• t-co-norm (+):

a+ b = max(a, b)

• implication (↪→):

a ↪→ b =

1 if a ⪯ b

b otherwise

• Calculation example:

• α · 1 = min(α, 1) = α

• α+ 1 = max(α, 1) = 1

• α ↪→ 1 = 1 since α ≺ 1

0

α

1

Figure 3: Lattice

representing the

order between the

values in the

designated

FLew-algebra.
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Many-Valued Halpern and

Shoham’s Logic (MVHS)



Syntax of MVHS

• Propositional letters: p, q, r , . . .

• Truth constants: α ∈ A (elements of the FLew-algebra)

• Logical binary connectives

• Conjunction: ∧
• Disjunction: ∨
• Implication: →

• Unary modalities

• ⟨X ⟩φ (there exists an interval related by X where φ holds)

• [X ]φ (for all intervals related by X , φ holds)

• Formulas are built inductively using these elements
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Many-Valued Linear Orderings and Strict Intervals

• Many-valued linear orders

D̃ = ⟨D, <̃, =̃⟩

• D is the domain
• <̃, =̃ : D × D → A are two functions mapping pairs of domain values

to A of a FLew-algebra A satisfying

1. =̃(x , y) = 1 iff x = y

2. =̃(x , y) = =̃(y , x)

3. <̃(x , x) = 0

4. <̃(x , z) ⪰ <̃(x , y) · <̃(y , z)

5. if <̃(x , y) ≻ 0 and <̃(y , z) ≻ 0, then <̃(x , z) ≻ 0

6. if <̃(x , y) = 0 and <̃(y , x) = 0, then =̃(x , y) = 1

7. if =̃(x , y) ≻ 0, then <̃(x , y) ≺ 1

• Many-valued strict intervals I(D̃) = {[x , y ] | <̃(x , y) ≻ 0}
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Many-Valued Allen’s Relations

relation definition example

x y

w z

w z

w z

w z

w z

w z

after RA([x , y ], [w , z]) = = (y ,w)

later RL([x , y ], [w , z]) = < (y ,w)

begins RB([x , y ], [w , z]) = = (x ,w)∧ < (z, y)

ends RE ([x , y ], [w , z]) = < (x ,w)∧ = (y , z)

during RD([x , y ], [w , z]) = < (x ,w)∧ < (z, y)

overlaps RO([x , y ], [w , z]) = < (x ,w)∧ < (w , y)∧ < (y , z)

Table 2: Allen’s interval relations.
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Many-Valued Allen’s Relations

relation definition example

x y

w z

w z

w z

w z

w z

w z

after R̃A([x , y ], [w , z]) = =̃(y ,w)

later R̃L([x , y ], [w , z]) = <̃(y ,w)

begins R̃B([x , y ], [w , z]) = =̃(x ,w) · <̃(z, y)

ends R̃E ([x , y ], [w , z]) = <̃(x ,w) · =̃(y , z)

during R̃D([x , y ], [w , z]) = <̃(x ,w) · <̃(z, y)

overlaps R̃O([x , y ], [w , z]) = <̃(x ,w) · <̃(w , y) · <̃(y , z)

Table 2: Many-valued Allen’s interval relations.
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Semantics of MVHS

• Many-valued interval models M̃ = ⟨I(D̃), Ṽ ⟩
• Valuation function Ṽ : Assigns truth values from A to formulas at

intervals

• Atoms:

• Ṽ (p, [x , y ]) ∈ A

• Ṽ (α, [x , y ]) = α ∈ A

• Logical connectives:

• Ṽ (φ ∧ ψ, [x , y ]) = Ṽ (φ, [x , y ]) · Ṽ (ψ, [x , y ])

• Ṽ (φ ∨ ψ, [x , y ]) = Ṽ (φ, [x , y ]) + Ṽ (ψ, [x , y ])

• Ṽ (φ→ ψ, [x , y ]) = Ṽ (φ, [x , y ]) ↪→ Ṽ (ψ, [x , y ])

• Modalities:

• Ṽ (⟨X ⟩φ, [x , y ]) =
⋃

[w,z]∈I(D̃)

(
R̃X ([x , y ], [w , z]) · Ṽ (φ, [w , z])

)
• Ṽ ([X ]φ, [x , y ]) =

⋂
[w,z]∈I(D̃)

(
R̃X ([x , y ], [w , z]) ↪→ Ṽ (φ, [w , z])

)
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Satisfiability and Validity

• A formula φ is α-satisfied at [x , y ] in M̃ if and only if

Ṽ (φ, [x , y ]) ⪰ α

• A formula is α-satisfiable if and only if an interval exists in a

multi-valued interval model where is α-satisfed

• A formula is α-valid if and only if it is α-satisfiable at every interval

in every multi-valued interval model

• A formula is valid if and only if it is 1-valid
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Application Example: Medical Diagnosis

• Scenario:

• Patient exhibits symptoms:

• “Depressed mood” (p)

• “Insomnia” (q)

• Symptoms vary in intensity over intervals

• Algebra’s domain A = [0, 1] ⊂ R

• Goal: Determine the degree to which an interval of “depressed

mood” meets a period of “insomnia”

• Formula:

φ = p ∧ ⟨A⟩q
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Application Example: Medical Diagnosis

• Assign truth values:

• Ṽ (p, [x , y ]) = 0.7

• Ṽ (q, [w , z]) = 0.8

• R̃A([x , y ], [w , z]) = =̃(y ,w) = 0.9

• Then:

Ṽ (φ, [x , y ]) = Ṽ (p ∧ ⟨A⟩q, [x , y ])
= Ṽ (p, [x , y ]) · Ṽ (⟨A⟩q, [x , y ])
= 0.7 · R̃A([x , y ], [w , z ]) · Ṽ (q, [w , z ])

= 0.7 · 0.9 · 0.8
= 0.504

• Interpretation: It is not always the case that a period of “depressed

mood” is followed by a period of “insomnia,” but we can say that it

happens in a non-negligible manner
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Tableau System: Theory and

Implementation



Need for a Tableau System

• Challenges in reasoning with MVHS

• Many-valued truth values increase the complexity

• Temporal modalities over intervals add to the intricacy

• Objective

• Develop a systematic method for determining satisfiability and

validity

• Ensure soundness and completeness

• Solution: Fitting’s style tableau system adapted for MVHS over

finite FLew-algebras
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Overview of the Tableau Structure

• Tree-like structure with nodes and branches

ν0 : T (1 ⪯ p ∧ (p → 0), [x, y ], D̃)

ν1 : T (1 ⪯ p), [x, y ], D̃)

ν2 : T (1 ⪯ (p → 0), [x, y ], D̃)

ν3 : F (p ⪯ α, [x, y ], D̃)

ν4 : T (p ⪯ 0, [x, y ], D̃)

ν5 : T (0 ⪯ 0, [x, y ], D̃)

✗

ν6 : T (p ⪯ α, [x, y ], D̃)

ν7 : T (α ⪯ 0, [x, y ], D̃)

✗

ν8 : T (p ⪯ 1, [x, y ], D̃)

ν9 : T (1 ⪯ 0, [x, y ], D̃)

✗

Figure 4: An example.

• Each node is associated with a decoration

Q(β ⪯ ψ, [x , y ], D̃) or Q(ψ ⪯ β, [x , y ], D̃)

• Q is a truth judgment - either T (true) or F (false)

• β ∈ A is a truth value from the FLew-algebra

• ψ ∈ sub(φ) is a sub-formula of φ

• [x , y ] is an interval

• D̃ is a many-valued linear order

• Branches represent possible evaluations and are associated with a

finite many-valued linear order
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Overview of the Tableau Procedure

• Purpose: Systematically explore possible valuations to determine:

• Satisfiability: If starting from T (α ⪯ φ) it finds an open branch

(SAT-tableau), or

• Validity: If starting from F (α ⪯ φ) it closes all branches

(VAL-tableau)

• Expansion and branching: Systematically apply expansion rules to

generate new nodes

• Closure: Close branches that contain contradictions using branch

closing rules

• Termination

• If all branches are closed, the formula is unsatisfiable

• If at least one open branch remains, a satisfying model exists

23



Expansion Rules: Reverse

T (β ⪯ ψ, [x , y ], D̃)
(T ⪰)

F (ψ ⪯ γ, [x , y ], c(B))

where β ̸= 0 and γ is any maximal

element not above β, i.e., γ ̸⪰ β

F (β ⪯ ψ, [x , y ], D̃)
(F ⪰)

T (ψ ⪯ γi , [x , y ], c(B)) | . . . | T (ψ ⪯ γn, [x , y ], c(B))

where β ̸= 0 and γ1, . . . , γn are all maximal

elements not above β, i.e., γ1, . . . , γn ̸⪰ β

Figure 5: Reverse rules (1).
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Expansion Rules: Reverse

T (ψ ⪯ β, [x , y ], D̃)
(T ⪯)

F (γ ⪯ ψ, [x , y ], c(B))

where β ̸= 1 and γ is any minimal

element not below β, i.e., γ ̸⪯ β

F (ψ ⪯ β, [x , y ], D̃)
(F ⪯)

T (γi ⪯ ψ, [x , y ], c(B)) | . . . | T (γi ⪯ ψ, [x , y ], c(B))

where β ̸= 1 and γ1, . . . , γn are all minimal

elements not below β, i.e., γ1, . . . , γn ̸⪯ β

Figure 6: Reverse rules (2).
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Expansion Rules: Propositional

T (β ⪯ (ψ ∧ ξ), [x , y ], D̃)
(T∧)

T (β1 ⪯ ψ, [x , y ], c(B)) | . . . | T (βn ⪯ ψ, [x , y ], c(B))

T (γ1 ⪯ ξ, [x , y ], c(B)) | . . . | T (γn ⪯ ξ, [x , y ], c(B))

where β ̸= 0, (βi , γi ) ∈ A × A so that β ⪯ βi · γi and there is no

other (β′
i , γ

′
i ) ∈ A × A such that β ⪯ β′

i · γ
′
i , β

′
i ⪯ βi and γ′

i ⪯ γi .

F (β ⪯ (ψ ∧ ξ), [x , y ], D̃)
(F∧)

T (ψ ⪯ β1, [x , y ], c(B)) | . . . | T (ψ ⪯ βn, [x , y ], c(B))

T (ξ ⪯ γ1, [x , y ], c(B)) | . . . | T (ξ ⪯ γn, [x , y ], c(B))

where β ̸= 0, (βi , γi ) ∈ A × A so that β ⪯̸ βi · γi and there is no

other (β′
i , γ

′
i ) ∈ A × A such that β ⪯̸ β′

i · γ
′
i , βi ⪯ β′

i and γi ⪯ γ′
i .

Figure 7: Propositional rules (1).
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Expansion Rules: Propositional

T ((ψ ∨ ξ) ⪯ β, [x , y ], D̃)
(T∨)

T (ψ ⪯ β1, [x , y ], c(B)) | . . . | T (ψ ⪯ βn, [x , y ], c(B))

T (ξ ⪯ γ1, [x , y ], c(B)) | . . . | T (ξ ⪯ γn, [x , y ], c(B))

where β ̸= 1, (βi , γi ) ∈ A × A so that βi + γi ⪯ β and there is no

other (β′
i , γ

′
i ) ∈ A × A such that β′

i + γ′
i ⪯ β, βi ⪯ β′

i and γi ⪯ γ′
i .

F ((ψ ∨ ξ) ⪯ β, [x , y ], D̃)
(F∨)

T (β1 ⪯ ψ, [x , y ], c(B)) | . . . | T (βn ⪯ ψ, [x , y ], c(B))

T (γ1 ⪯ ξ, [x , y ], c(B)) | . . . | T (γn ⪯ ξ, [x , y ], c(B))

where β ̸= 1, (βi , γi ) ∈ A × A so that βi + γi ⪯̸ β and there is no

other (β′
i , γ

′
i ) ∈ A × A such that β′

i + γ′
i ⪯̸ β, β′

i ⪯ βi and γ′
i ⪯ γi .

Figure 8: Propositional rules (2).

27



Expansion Rules: Propositional

T (β ⪯ (ψ ↪→ ξ), [x , y ], D̃)
(T ↪→)

T (ψ ⪯ β1, [x , y ], c(B)) | . . . | T (ψ ⪯ βn, [x , y ], c(B))

T (γ1 ⪯ ξ, [x , y ], c(B)) | . . . | T (γn ⪯ ξ, [x , y ], c(B))

where β ̸= 0, (βi , γi ) ∈ A × A so that β ⪯ βi ↪→ γi and there is no

other (β′
i , γ

′
i ) ∈ A × A such that β ⪯ β′

i ↪→ γ′
i , βi ⪯ β′

i and γ′
i ⪯ γi .

F (β ⪯ (ψ ↪→ ξ), [x , y ], D̃)
(F ↪→)

T (β1 ⪯ ψ, [x , y ], c(B)) | . . . | T (βn ⪯ ψ, [x , y ], c(B))

T (ξ ⪯ γ1, [x , y ], c(B)) | . . . | T (ξ ⪯ γn, [x , y ], c(B))

where β ̸= 0, (βi , γi ) ∈ A × A so that β ⪯̸ βi ↪→ γi and there is no

other (β′
i , γ

′
i ) ∈ A × A such that β ⪯̸ β′

i ↪→ γ′
i , β

′
i ⪯ βi and γi ⪯ γ′

i .

Figure 9: Propositional rules (3).
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Expansion Rules: Modalities

T (β ⪯ [X ]ψ, [x , y ], D̃)
(T□)

T ((β · γ1) ⪯ ψ, [z1, t1], c(B))
. . .

T ((β · γn) ⪯ ψ, [zn, tn], c(B))

T (β ⪯ [X ]ψ, [x , y ], c(B))

where γi = R̃X ([x, y ], [zi , ti ]), [zi , ti ] ∈ o(c(B)),

γi ≻ 0, and β · γi ̸= 0

F (β ⪯ [X ]ψ, [x , y ], D̃)
(F□)

F ((β · γ1) ⪯ ψ, [z1, t1], c(B)) | . . . | F ((β · γn) ⪯ ψ, [zn, tn], c(B))

where γi = R̃X ([x, y ], [zi , ti ]),[zi , ti ] ∈ o(c(B)) ∪ n(c(B)),

γi ≻ 0, and β · γi ̸= 0

Figure 10: Temporal rules (1).
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Expansion Rules: Modalities

T (⟨X ⟩ψ ⪯ β, [x , y ], D̃)
(T♢)

T ((ψ ⪯ (γ1 ↪→ β), [z1, t1], c(B))
. . .

T (ψ ⪯ (γn ↪→ β), [zn, tn], c(B))

T (⟨X ⟩ψ ⪯ β, [x , y ], c(B))

where γi = R̃X ([x, y ], [zi , ti ]), [zi , ti ] ∈ o(c(B)),

γi ≻ 0, and γi ↪→ β ̸= 1

F (⟨X ⟩ψ ⪯ β, [x , y ], D̃)
(F♢)

F (ψ ⪯ (γ1 ↪→ β), [z1, t1], c(B)) | . . . | F (ψ ⪯ (γn ↪→ β), [zn, tn], c(B))

where γi = R̃X ([x, y ], [zi , ti ]),[zi , ti ] ∈ o(c(B)) ∪ n(c(B)),

γi ≻ 0, and γi ↪→ β ̸= 1

Figure 11: Temporal rules (2).
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Branch Closing Rules

T (β ⪯ γ, [x , y ], D̃)
(✗1)

✗

where β ̸⪯ γ

F (β ⪯ γ, [x , y ], D̃)
(✗2)

✗

where β ̸= 0, γ ̸= 1, and β ⪯ γ

F (0 ⪯ ψ, [x , y ], D̃)
(✗3)

✗

F (ψ ⪯ 1, [x , y ], D̃)
(✗4)

✗

T (γ ⪯ ψ, [x , y ], D̃)

F (β ⪯ ψ, [x , y ], D̃)
(✗5)

✗

where β ⪯ γ

Q(·, ·, D̃)
(✗6)

✗

where D̃ is inconsistent

Figure 12: Branch closing rules.

31



Example: Tableau Construction

ν0 : T (1 ⪯ ⟨A⟩p ∧ [A](p → 0), [x, y ], D̃) D̃ = {<̃(x, y) ≻ 0}

ν1 : T (1 ⪯ ⟨A⟩p), [x, y ], D̃)

ν2 : T (1 ⪯ [A](p → 0), [x, y ], D̃)

ν3 : F (⟨A⟩p ⪯ α, [x, y ], D̃)

ν4 : T (1 ⪯ [A](p ⪯ 0), [x, y ], D̃)

ν5 : F (p ⪯ (1 ↪→ 1), [z, t], D̃′) D̃′ = D̃ ∪ {=̃(x, y) = 0, <̃(z, t) ≻ 0, =̃(y , z) = 1}

ν6 : T ((1 ∩ 1) ⪯ (p → 0), [z, t], D̃′)

ν7 : T (1 ⪯ [A](p → 0), [x, y ], D̃′)

ν8 : T (α ⪯ p, [z, t], D̃′)

ν9 : T (p ⪯ 0, [z, t], D̃′)

ν10 : T (0 ⪯ 0, [z, t], D̃′)

✗

ν11 : T (p ⪯ α, [z, t], D̃′)

ν12 : T (α ⪯ 0, [z, t], D̃′)

✗

ν13 : T (p ⪯ 1, [z, t], D̃′)

ν14 : T (1 ⪯ 0, [z, t], D̃′)

✗

(T∧)

(T∧)

(T ≥)

(T□)

(F♢)

(T□)

(T□)

(F ≤)

(T →)
(T →)

(T →)

(✗5)

(✗5)
(✗1) (✗1)

Figure 13: Closed branches of the tableau for ⟨A⟩p ∧ [A](p → 0) and 1 ∈ G3.
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Soundness and Completeness over Finite FLew-Algebras

• Soundness

• If a formula φ is α-satisfiable, then there exists an opened tableau

for φ and α

• The rules preserve logical consequence

• Completeness

• If a tableau is opened for φ and α, then φ is α-satisfiable.

• The method explores all necessary valuations

• Implications

• The tableau system is a reliable decision procedure for MVHS over

finite FLew-algebras

• Provides a foundation for automated reasoning in MVHS
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Implementation Overview

• Programming Language:

• Julia, chosen for its performance in numerical computations:

• High-level syntax with efficient execution

• Strong support for mathematical operations

• Open-source Advocacy:

• Sole.jl (SymbOlic LEarning)1, a framework for representing,

reasoning, and learning from structured and unstructured data

• SoleReasoners.jl, analytic tableau solvers for α-sat and α-val.

• Representation of Algebras:

• Wrapped in the ManyValuedLogics submodule of SoleLogics.jl
• Finite FLew-algebras defined by specifying:

• Domain (set of truth values A)

• Truth tables for ∩, ∪, ·, + (↪→ is derived internally)

• A one-time check ensures the algebra satisfies the FLew-axioms.

1https://github.com/aclai-lab/Sole.jl
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Code Examples: Gödel Algebra (G3)

Figure 14: Evaluation code example for T (⊤ ⪯ φ) where

φ = ⟨A⟩p ∧ [A](p → 0) and ⊤ ∈ G3.
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Code Examples: Heyting Algebra (H4)

Figure 15: Evaluation code example for T (⊤ ⪯ φ) where

φ = ⟨A⟩p ∧ [A](p → 0) and ⊤ ∈ H4.
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Key Challenges and Solutions

• Computational complexity increases with:

• Size of the algebra: More truth values to consider

• Complexity of the formula: More nodes and branches

• Optimization techniques:

• Implemented priority queues to manage node expansion efficiently

• Parallelization: Expanded independent branches using multi-core

processors

• Pruning strategies: Periodically clean priority queues to remove

expanded or closed nodes

• Efficient data structures:

• Designed compact representations for nodes and branches

• Minimized memory usage to handle large tableaux
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Experiments and Results

• Six representative finite FLew-algebras:

0

1

B 0

α

1

G3, MV3 0

α

β

1

G4, MV4

0

α β

1

H4

• G3 and MV3 (resp. G4 and MV4) differ because of the t-norm but

share the same lattice structure

• Each algebra tested on 500 random formulas with heights up to 5

(i.e., 32 symbols)

• α ≻ 0 chosen randomly

• Branch priority policy kept random
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Experiments and Results

• Impact of using different FLew-Algebras

• All tests were conducted on a machine equipped with 2 Intel Xeon

Gold 28-Core CPUs and 224GB of RAM

• Timeout of 30 seconds

B G3 MV3 G4 MV4 H4
0

100

200

300

400

500

α-sat

α-sat
not α-sat
timeout

B G3 MV3 G4 MV4 H4
0

100

200

300

400

500

α-val

α-val
not α-val
timeout

Figure 16: Results on common many-valued algebras for formulas of height up

to 5 with a timeout of 30 seconds.
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Conclusions and Future Work

• Presented a customizable and flexible framework for many-valued

interval temporal logic

• Developed a sound and complete tableau system for MVHS

• Ready-to-use open-source implementation with user-definable

finite FLew-algebras
2

• Tested the tableau system over different finite FLew-algebras

• Future work:

• Support for Many-Valued Interval Spatial Logic

• Real-world applications (Many-Expert Decision Tree Learning)

2https://github.com/aclai-lab/Sole.jl
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Thank you for the attention!
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P. Hájek.

Basic fuzzy logic and bl-algebras.

Soft computing, 2:124–128, 1998.

41



References ii

P. Hájek.
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