
Reasoning with Many-Valued Interval

Temporal Logic

Guillermo Badia1 Carles Noguera2 Alberto Paparella3 Guido Sciavicco3

I. Eduard Stan4

November 28, 2024

1School of Historical and Philosophical Inquiry, University of Queensland, Australia

2Department of Information Engineering and Mathematics, University of Siena, Italy

3Department of Mathematics and Computer Science, University of Ferrara, Italy

4Department of Informatics, Systems and Communication, University of Milano-Bicocca, Italy

Introduction

Motivation

• Let’s start with an example:

• Patient exhibits symptoms of “depressed mood” and “insomnia”
• Symptoms:

• Vary in intensity over time

• Meet during certain intervals

• Need to model:

• Degrees of symptom severity

• Temporal relationships between symptoms

• Real-world scenarios involve degrees of “truth”, uncertainty,

and temporal information

1

Limitations of Classical Logic

• Traditional binary logic is insufficient for modeling such complexities

• Binary truth values (true or false)

• Cannot represent partial truths or degrees of certainty

2

Many-Valued Logics

• Handle partial truths and uncertainty

• Extend beyond the binary truth values of classical logic

• Examples:

• Fuzzy logics:

• Lukasiewicz logic

• Gödel logic

• Product logic

• Intuitionistic logic

3

Interval Temporal Logic

• Useful for modeling temporal relationships between events

• Focuses on reasoning over time intervals rather than time points

• Uses Allen’s interval relations:

• After, Later, Begins, Ends, During, Overlaps.

4

Many-Valued Interval Temporal Logic

• Objective: Model graded truths over time intervals

• Challenges:

• Integrating many-valued truth with temporal relations

• Developing reasoning systems to handle complexity

5

Our Contribution

• A sound and complete tableau system for many-valued interval

temporal logic

• Based on FLew-algebras to handle graded truth values

• Open-source implementation for real-world applicability

6

Presentation Overview

Introduction

Preliminaries

Many-Valued Halpern and Shoham’s Logic (MVHS)

Tableau System: Theory and Implementation

Experiments and Results

Conclusions and Future Work

7

Preliminaries

Halpern and Shoham’s Interval Temporal Logic (HS)

• HS is a modal logic for reasoning about time intervals

• Uses modalities corresponding to Allen’s interval relations

• Allows expression of temporal relationships between intervals

• Widely used in temporal reasoning, representation, and planning

within AI

(a) Joseph Halpern. (b) Yoav Shoham.

8

Allen’s Interval Relations

relation definition example

x y

w z

w z

w z

w z

w z

w z

after RA([x , y], [w , z]) = = (y ,w)

later RL([x , y], [w , z]) = < (y ,w)

begins RB([x , y], [w , z]) = = (x ,w)∧ < (z, y)

ends RE ([x , y], [w , z]) = < (x ,w)∧ = (y , z)

during RD([x , y], [w , z]) = < (x ,w)∧ < (z, y)

overlaps RO([x , y], [w , z]) = < (x ,w)∧ < (w , y)∧ < (y , z)

Table 1: Allen’s interval relations.

9

Limitations of Classical HS

• HS is based on classical (binary) logic

• Propositions and temporal relations are either true or false

• Cannot handle:

• Graded truths (partial truth values)

• Uncertainty or imprecision

• Inadequate for modeling real-world scenarios

10

FLew-Algebras

• FLew-algebras [6]

A = ⟨A,∩,∪, ·,+, 0, 1⟩

are defined over bounded integral commutative residuated
lattices

• A is the algebra’s domain

• ⟨A,∩,∪, 0, 1⟩ represents a bounded complete lattice with upper

bound 1 and lower bound 0

• ⟨A,⪯⟩ corresponds to its lattice-ordered set (α ⪯ β iff α = α ∩ β)
• ⟨A, ·, 1⟩ and ⟨A,+, 0⟩ are commutative monoids, namely t-norm

and t-co-norm, with both operations being monotone for ⪯ (if

γ ⪯ α and δ ⪯ β, then γ · δ ⪯ α · β and γ + δ ⪯ α+ β)

• We also define an implication operation ↪→

α ↪→ β = sup{γ | α · γ ⪯ β}.

• A is a chain if ⪯ is a total order; standard if A = [0, 1] ⊂ R; finite

if A is finite. We will focus on finite FLew -algebras.

11

Relation to Other Algebras

• FLew-algebras encompass several known algebras:

• Gödel algebras

• MV algebras

• Product algebras

• Heyting algebras

• Generalization allows for unified treatment

• Visual hierarchy:
BA

G [1] Π [5] MV [2, 7]

H [3] BL [4]

FLew [6]

Figure 2: A partial taxonomy of well-known truth value algebras.

12

Example: Simple FLew-Algebra (G3)

• Set of truth values: A = {0, α, 1} with 0 ≺ α ≺ 1

• Operations defined as:

• t-norm (·):
a · b = min(a, b)

• t-co-norm (+):

a+ b = max(a, b)

• implication (↪→):

a ↪→ b =

1 if a ⪯ b

b otherwise

• Calculation example:

• α · 1 = min(α, 1) = α

• α+ 1 = max(α, 1) = 1

• α ↪→ 1 = 1 since α ≺ 1

0

α

1

Figure 3: Lattice

representing the

order between the

values in the

designated

FLew-algebra.

13

Many-Valued Halpern and

Shoham’s Logic (MVHS)

Syntax of MVHS

• Propositional letters: p, q, r , . . .

• Truth constants: α ∈ A (elements of the FLew-algebra)

• Logical binary connectives

• Conjunction: ∧
• Disjunction: ∨
• Implication: →

• Unary modalities

• ⟨X ⟩φ (there exists an interval related by X where φ holds)

• [X]φ (for all intervals related by X , φ holds)

• Formulas are built inductively using these elements

14

Many-Valued Linear Orderings and Strict Intervals

• Many-valued linear orders

D̃ = ⟨D, <̃, =̃⟩

• D is the domain
• <̃, =̃ : D × D → A are two functions mapping pairs of domain values

to A of a FLew-algebra A satisfying

1. =̃(x , y) = 1 iff x = y

2. =̃(x , y) = =̃(y , x)

3. <̃(x , x) = 0

4. <̃(x , z) ⪰ <̃(x , y) · <̃(y , z)

5. if <̃(x , y) ≻ 0 and <̃(y , z) ≻ 0, then <̃(x , z) ≻ 0

6. if <̃(x , y) = 0 and <̃(y , x) = 0, then =̃(x , y) = 1

7. if =̃(x , y) ≻ 0, then <̃(x , y) ≺ 1

• Many-valued strict intervals I(D̃) = {[x , y] | <̃(x , y) ≻ 0}

15

Many-Valued Allen’s Relations

relation definition example

x y

w z

w z

w z

w z

w z

w z

after RA([x , y], [w , z]) = = (y ,w)

later RL([x , y], [w , z]) = < (y ,w)

begins RB([x , y], [w , z]) = = (x ,w)∧ < (z, y)

ends RE ([x , y], [w , z]) = < (x ,w)∧ = (y , z)

during RD([x , y], [w , z]) = < (x ,w)∧ < (z, y)

overlaps RO([x , y], [w , z]) = < (x ,w)∧ < (w , y)∧ < (y , z)

Table 2: Allen’s interval relations.

16

Many-Valued Allen’s Relations

relation definition example

x y

w z

w z

w z

w z

w z

w z

after R̃A([x , y], [w , z]) = =̃(y ,w)

later R̃L([x , y], [w , z]) = <̃(y ,w)

begins R̃B([x , y], [w , z]) = =̃(x ,w) · <̃(z, y)

ends R̃E ([x , y], [w , z]) = <̃(x ,w) · =̃(y , z)

during R̃D([x , y], [w , z]) = <̃(x ,w) · <̃(z, y)

overlaps R̃O([x , y], [w , z]) = <̃(x ,w) · <̃(w , y) · <̃(y , z)

Table 2: Many-valued Allen’s interval relations.

16

Semantics of MVHS

• Many-valued interval models M̃ = ⟨I(D̃), Ṽ ⟩
• Valuation function Ṽ : Assigns truth values from A to formulas at

intervals

• Atoms:

• Ṽ (p, [x , y]) ∈ A

• Ṽ (α, [x , y]) = α ∈ A

• Logical connectives:

• Ṽ (φ ∧ ψ, [x , y]) = Ṽ (φ, [x , y]) · Ṽ (ψ, [x , y])

• Ṽ (φ ∨ ψ, [x , y]) = Ṽ (φ, [x , y]) + Ṽ (ψ, [x , y])

• Ṽ (φ→ ψ, [x , y]) = Ṽ (φ, [x , y]) ↪→ Ṽ (ψ, [x , y])

• Modalities:

• Ṽ (⟨X ⟩φ, [x , y]) =
⋃

[w,z]∈I(D̃)

(
R̃X ([x , y], [w , z]) · Ṽ (φ, [w , z])

)
• Ṽ ([X]φ, [x , y]) =

⋂
[w,z]∈I(D̃)

(
R̃X ([x , y], [w , z]) ↪→ Ṽ (φ, [w , z])

)

17

Satisfiability and Validity

• A formula φ is α-satisfied at [x , y] in M̃ if and only if

Ṽ (φ, [x , y]) ⪰ α

• A formula is α-satisfiable if and only if an interval exists in a

multi-valued interval model where is α-satisfed

• A formula is α-valid if and only if it is α-satisfiable at every interval

in every multi-valued interval model

• A formula is valid if and only if it is 1-valid

18

Application Example: Medical Diagnosis

• Scenario:

• Patient exhibits symptoms:

• “Depressed mood” (p)

• “Insomnia” (q)

• Symptoms vary in intensity over intervals

• Algebra’s domain A = [0, 1] ⊂ R

• Goal: Determine the degree to which an interval of “depressed

mood” meets a period of “insomnia”

• Formula:

φ = p ∧ ⟨A⟩q

19

Application Example: Medical Diagnosis

• Assign truth values:

• Ṽ (p, [x , y]) = 0.7

• Ṽ (q, [w , z]) = 0.8

• R̃A([x , y], [w , z]) = =̃(y ,w) = 0.9

• Then:

Ṽ (φ, [x , y]) = Ṽ (p ∧ ⟨A⟩q, [x , y])
= Ṽ (p, [x , y]) · Ṽ (⟨A⟩q, [x , y])
= 0.7 · R̃A([x , y], [w , z]) · Ṽ (q, [w , z])

= 0.7 · 0.9 · 0.8
= 0.504

• Interpretation: It is not always the case that a period of “depressed

mood” is followed by a period of “insomnia,” but we can say that it

happens in a non-negligible manner

20

Tableau System: Theory and

Implementation

Need for a Tableau System

• Challenges in reasoning with MVHS

• Many-valued truth values increase the complexity

• Temporal modalities over intervals add to the intricacy

• Objective

• Develop a systematic method for determining satisfiability and

validity

• Ensure soundness and completeness

• Solution: Fitting’s style tableau system adapted for MVHS over

finite FLew-algebras

21

Overview of the Tableau Structure

• Tree-like structure with nodes and branches

ν0 : T (1 ⪯ p ∧ (p → 0), [x, y], D̃)

ν1 : T (1 ⪯ p), [x, y], D̃)

ν2 : T (1 ⪯ (p → 0), [x, y], D̃)

ν3 : F (p ⪯ α, [x, y], D̃)

ν4 : T (p ⪯ 0, [x, y], D̃)

ν5 : T (0 ⪯ 0, [x, y], D̃)

✗

ν6 : T (p ⪯ α, [x, y], D̃)

ν7 : T (α ⪯ 0, [x, y], D̃)

✗

ν8 : T (p ⪯ 1, [x, y], D̃)

ν9 : T (1 ⪯ 0, [x, y], D̃)

✗

Figure 4: An example.

• Each node is associated with a decoration

Q(β ⪯ ψ, [x , y], D̃) or Q(ψ ⪯ β, [x , y], D̃)

• Q is a truth judgment - either T (true) or F (false)

• β ∈ A is a truth value from the FLew-algebra

• ψ ∈ sub(φ) is a sub-formula of φ

• [x , y] is an interval

• D̃ is a many-valued linear order

• Branches represent possible evaluations and are associated with a

finite many-valued linear order

22

Overview of the Tableau Procedure

• Purpose: Systematically explore possible valuations to determine:

• Satisfiability: If starting from T (α ⪯ φ) it finds an open branch

(SAT-tableau), or

• Validity: If starting from F (α ⪯ φ) it closes all branches

(VAL-tableau)

• Expansion and branching: Systematically apply expansion rules to

generate new nodes

• Closure: Close branches that contain contradictions using branch

closing rules

• Termination

• If all branches are closed, the formula is unsatisfiable

• If at least one open branch remains, a satisfying model exists

23

Expansion Rules: Reverse

T (β ⪯ ψ, [x , y], D̃)
(T ⪰)

F (ψ ⪯ γ, [x , y], c(B))

where β ̸= 0 and γ is any maximal

element not above β, i.e., γ ̸⪰ β

F (β ⪯ ψ, [x , y], D̃)
(F ⪰)

T (ψ ⪯ γi , [x , y], c(B)) | . . . | T (ψ ⪯ γn, [x , y], c(B))

where β ̸= 0 and γ1, . . . , γn are all maximal

elements not above β, i.e., γ1, . . . , γn ̸⪰ β

Figure 5: Reverse rules (1).

24

Expansion Rules: Reverse

T (ψ ⪯ β, [x , y], D̃)
(T ⪯)

F (γ ⪯ ψ, [x , y], c(B))

where β ̸= 1 and γ is any minimal

element not below β, i.e., γ ̸⪯ β

F (ψ ⪯ β, [x , y], D̃)
(F ⪯)

T (γi ⪯ ψ, [x , y], c(B)) | . . . | T (γi ⪯ ψ, [x , y], c(B))

where β ̸= 1 and γ1, . . . , γn are all minimal

elements not below β, i.e., γ1, . . . , γn ̸⪯ β

Figure 6: Reverse rules (2).

25

Expansion Rules: Propositional

T (β ⪯ (ψ ∧ ξ), [x , y], D̃)
(T∧)

T (β1 ⪯ ψ, [x , y], c(B)) | . . . | T (βn ⪯ ψ, [x , y], c(B))

T (γ1 ⪯ ξ, [x , y], c(B)) | . . . | T (γn ⪯ ξ, [x , y], c(B))

where β ̸= 0, (βi , γi) ∈ A × A so that β ⪯ βi · γi and there is no

other (β′
i , γ

′
i) ∈ A × A such that β ⪯ β′

i · γ
′
i , β

′
i ⪯ βi and γ′

i ⪯ γi .

F (β ⪯ (ψ ∧ ξ), [x , y], D̃)
(F∧)

T (ψ ⪯ β1, [x , y], c(B)) | . . . | T (ψ ⪯ βn, [x , y], c(B))

T (ξ ⪯ γ1, [x , y], c(B)) | . . . | T (ξ ⪯ γn, [x , y], c(B))

where β ̸= 0, (βi , γi) ∈ A × A so that β ⪯̸ βi · γi and there is no

other (β′
i , γ

′
i) ∈ A × A such that β ⪯̸ β′

i · γ
′
i , βi ⪯ β′

i and γi ⪯ γ′
i .

Figure 7: Propositional rules (1).

26

Expansion Rules: Propositional

T ((ψ ∨ ξ) ⪯ β, [x , y], D̃)
(T∨)

T (ψ ⪯ β1, [x , y], c(B)) | . . . | T (ψ ⪯ βn, [x , y], c(B))

T (ξ ⪯ γ1, [x , y], c(B)) | . . . | T (ξ ⪯ γn, [x , y], c(B))

where β ̸= 1, (βi , γi) ∈ A × A so that βi + γi ⪯ β and there is no

other (β′
i , γ

′
i) ∈ A × A such that β′

i + γ′
i ⪯ β, βi ⪯ β′

i and γi ⪯ γ′
i .

F ((ψ ∨ ξ) ⪯ β, [x , y], D̃)
(F∨)

T (β1 ⪯ ψ, [x , y], c(B)) | . . . | T (βn ⪯ ψ, [x , y], c(B))

T (γ1 ⪯ ξ, [x , y], c(B)) | . . . | T (γn ⪯ ξ, [x , y], c(B))

where β ̸= 1, (βi , γi) ∈ A × A so that βi + γi ⪯̸ β and there is no

other (β′
i , γ

′
i) ∈ A × A such that β′

i + γ′
i ⪯̸ β, β′

i ⪯ βi and γ′
i ⪯ γi .

Figure 8: Propositional rules (2).

27

Expansion Rules: Propositional

T (β ⪯ (ψ ↪→ ξ), [x , y], D̃)
(T ↪→)

T (ψ ⪯ β1, [x , y], c(B)) | . . . | T (ψ ⪯ βn, [x , y], c(B))

T (γ1 ⪯ ξ, [x , y], c(B)) | . . . | T (γn ⪯ ξ, [x , y], c(B))

where β ̸= 0, (βi , γi) ∈ A × A so that β ⪯ βi ↪→ γi and there is no

other (β′
i , γ

′
i) ∈ A × A such that β ⪯ β′

i ↪→ γ′
i , βi ⪯ β′

i and γ′
i ⪯ γi .

F (β ⪯ (ψ ↪→ ξ), [x , y], D̃)
(F ↪→)

T (β1 ⪯ ψ, [x , y], c(B)) | . . . | T (βn ⪯ ψ, [x , y], c(B))

T (ξ ⪯ γ1, [x , y], c(B)) | . . . | T (ξ ⪯ γn, [x , y], c(B))

where β ̸= 0, (βi , γi) ∈ A × A so that β ⪯̸ βi ↪→ γi and there is no

other (β′
i , γ

′
i) ∈ A × A such that β ⪯̸ β′

i ↪→ γ′
i , β

′
i ⪯ βi and γi ⪯ γ′

i .

Figure 9: Propositional rules (3).

28

Expansion Rules: Modalities

T (β ⪯ [X]ψ, [x , y], D̃)
(T□)

T ((β · γ1) ⪯ ψ, [z1, t1], c(B))
. . .

T ((β · γn) ⪯ ψ, [zn, tn], c(B))

T (β ⪯ [X]ψ, [x , y], c(B))

where γi = R̃X ([x, y], [zi , ti]), [zi , ti] ∈ o(c(B)),

γi ≻ 0, and β · γi ̸= 0

F (β ⪯ [X]ψ, [x , y], D̃)
(F□)

F ((β · γ1) ⪯ ψ, [z1, t1], c(B)) | . . . | F ((β · γn) ⪯ ψ, [zn, tn], c(B))

where γi = R̃X ([x, y], [zi , ti]),[zi , ti] ∈ o(c(B)) ∪ n(c(B)),

γi ≻ 0, and β · γi ̸= 0

Figure 10: Temporal rules (1).

29

Expansion Rules: Modalities

T (⟨X ⟩ψ ⪯ β, [x , y], D̃)
(T♢)

T ((ψ ⪯ (γ1 ↪→ β), [z1, t1], c(B))
. . .

T (ψ ⪯ (γn ↪→ β), [zn, tn], c(B))

T (⟨X ⟩ψ ⪯ β, [x , y], c(B))

where γi = R̃X ([x, y], [zi , ti]), [zi , ti] ∈ o(c(B)),

γi ≻ 0, and γi ↪→ β ̸= 1

F (⟨X ⟩ψ ⪯ β, [x , y], D̃)
(F♢)

F (ψ ⪯ (γ1 ↪→ β), [z1, t1], c(B)) | . . . | F (ψ ⪯ (γn ↪→ β), [zn, tn], c(B))

where γi = R̃X ([x, y], [zi , ti]),[zi , ti] ∈ o(c(B)) ∪ n(c(B)),

γi ≻ 0, and γi ↪→ β ̸= 1

Figure 11: Temporal rules (2).

30

Branch Closing Rules

T (β ⪯ γ, [x , y], D̃)
(✗1)

✗

where β ̸⪯ γ

F (β ⪯ γ, [x , y], D̃)
(✗2)

✗

where β ̸= 0, γ ̸= 1, and β ⪯ γ

F (0 ⪯ ψ, [x , y], D̃)
(✗3)

✗

F (ψ ⪯ 1, [x , y], D̃)
(✗4)

✗

T (γ ⪯ ψ, [x , y], D̃)

F (β ⪯ ψ, [x , y], D̃)
(✗5)

✗

where β ⪯ γ

Q(·, ·, D̃)
(✗6)

✗

where D̃ is inconsistent

Figure 12: Branch closing rules.

31

Example: Tableau Construction

ν0 : T (1 ⪯ ⟨A⟩p ∧ [A](p → 0), [x, y], D̃) D̃ = {<̃(x, y) ≻ 0}

ν1 : T (1 ⪯ ⟨A⟩p), [x, y], D̃)

ν2 : T (1 ⪯ [A](p → 0), [x, y], D̃)

ν3 : F (⟨A⟩p ⪯ α, [x, y], D̃)

ν4 : T (1 ⪯ [A](p ⪯ 0), [x, y], D̃)

ν5 : F (p ⪯ (1 ↪→ 1), [z, t], D̃′) D̃′ = D̃ ∪ {=̃(x, y) = 0, <̃(z, t) ≻ 0, =̃(y , z) = 1}

ν6 : T ((1 ∩ 1) ⪯ (p → 0), [z, t], D̃′)

ν7 : T (1 ⪯ [A](p → 0), [x, y], D̃′)

ν8 : T (α ⪯ p, [z, t], D̃′)

ν9 : T (p ⪯ 0, [z, t], D̃′)

ν10 : T (0 ⪯ 0, [z, t], D̃′)

✗

ν11 : T (p ⪯ α, [z, t], D̃′)

ν12 : T (α ⪯ 0, [z, t], D̃′)

✗

ν13 : T (p ⪯ 1, [z, t], D̃′)

ν14 : T (1 ⪯ 0, [z, t], D̃′)

✗

(T∧)

(T∧)

(T ≥)

(T□)

(F♢)

(T□)

(T□)

(F ≤)

(T →)
(T →)

(T →)

(✗5)

(✗5)
(✗1) (✗1)

Figure 13: Closed branches of the tableau for ⟨A⟩p ∧ [A](p → 0) and 1 ∈ G3.

32

Soundness and Completeness over Finite FLew-Algebras

• Soundness

• If a formula φ is α-satisfiable, then there exists an opened tableau

for φ and α

• The rules preserve logical consequence

• Completeness

• If a tableau is opened for φ and α, then φ is α-satisfiable.

• The method explores all necessary valuations

• Implications

• The tableau system is a reliable decision procedure for MVHS over

finite FLew-algebras

• Provides a foundation for automated reasoning in MVHS

33

Implementation Overview

• Programming Language:

• Julia, chosen for its performance in numerical computations:

• High-level syntax with efficient execution

• Strong support for mathematical operations

• Open-source Advocacy:

• Sole.jl (SymbOlic LEarning)1, a framework for representing,

reasoning, and learning from structured and unstructured data

• SoleReasoners.jl, analytic tableau solvers for α-sat and α-val.

• Representation of Algebras:

• Wrapped in the ManyValuedLogics submodule of SoleLogics.jl
• Finite FLew-algebras defined by specifying:

• Domain (set of truth values A)

• Truth tables for ∩, ∪, ·, + (↪→ is derived internally)

• A one-time check ensures the algebra satisfies the FLew-axioms.

1https://github.com/aclai-lab/Sole.jl

34

https://github.com/aclai-lab/Sole.jl

Code Examples: Gödel Algebra (G3)

Figure 14: Evaluation code example for T (⊤ ⪯ φ) where

φ = ⟨A⟩p ∧ [A](p → 0) and ⊤ ∈ G3.

35

Code Examples: Heyting Algebra (H4)

Figure 15: Evaluation code example for T (⊤ ⪯ φ) where

φ = ⟨A⟩p ∧ [A](p → 0) and ⊤ ∈ H4.

36

Key Challenges and Solutions

• Computational complexity increases with:

• Size of the algebra: More truth values to consider

• Complexity of the formula: More nodes and branches

• Optimization techniques:

• Implemented priority queues to manage node expansion efficiently

• Parallelization: Expanded independent branches using multi-core

processors

• Pruning strategies: Periodically clean priority queues to remove

expanded or closed nodes

• Efficient data structures:

• Designed compact representations for nodes and branches

• Minimized memory usage to handle large tableaux

37

Experiments and Results

Experiments and Results

• Six representative finite FLew-algebras:

0

1

B 0

α

1

G3, MV3 0

α

β

1

G4, MV4

0

α β

1

H4

• G3 and MV3 (resp. G4 and MV4) differ because of the t-norm but

share the same lattice structure

• Each algebra tested on 500 random formulas with heights up to 5

(i.e., 32 symbols)

• α ≻ 0 chosen randomly

• Branch priority policy kept random

38

Experiments and Results

• Impact of using different FLew-Algebras

• All tests were conducted on a machine equipped with 2 Intel Xeon

Gold 28-Core CPUs and 224GB of RAM

• Timeout of 30 seconds

B G3 MV3 G4 MV4 H4
0

100

200

300

400

500

α-sat

α-sat
not α-sat
timeout

B G3 MV3 G4 MV4 H4
0

100

200

300

400

500

α-val

α-val
not α-val
timeout

Figure 16: Results on common many-valued algebras for formulas of height up

to 5 with a timeout of 30 seconds.

39

Conclusions and Future Work

Conclusions and Future Work

• Presented a customizable and flexible framework for many-valued

interval temporal logic

• Developed a sound and complete tableau system for MVHS

• Ready-to-use open-source implementation with user-definable

finite FLew-algebras
2

• Tested the tableau system over different finite FLew-algebras

• Future work:

• Support for Many-Valued Interval Spatial Logic

• Real-world applications (Many-Expert Decision Tree Learning)

2https://github.com/aclai-lab/Sole.jl

40

https://github.com/aclai-lab/Sole.jl

Thank you for the attention!

40

References i

M. Baaz, N. Preining, and R. Zach.

First-order Gödel logics.

Annals of Pure and Applied Logic, 147:23–47, 2007.

C. C. Chang.

Algebraic analysis of many valued logics.

Transactions of the American Mathematical society, 88(2):467–490,

1958.

L. Esakia, G. Bezhanishvili, W. Holliday, and A. Evseev.

Heyting Algebras: Duality Theory.

Springer, 2019.

P. Hájek.

Basic fuzzy logic and bl-algebras.

Soft computing, 2:124–128, 1998.

41

References ii

P. Hájek.

The Metamathematics of Fuzzy Logic.

Kluwer, 1998.

H. Ono and Y. Komori.

Logics without the contraction rule.

The Journal of Symbolic Logic, 50(1):169–201, 1985.

A. Rose.

Formalisations of further ℵ0-valued Lukasiewicz propositional

calculi.

Journal of Symbolic Logic, 43(2):207–210, 1978.

42

	Introduction
	Preliminaries
	Many-Valued Halpern and Shoham's Logic (MVHS)
	Tableau System: Theory and Implementation
	Experiments and Results
	Conclusions and Future Work

